BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25537984)

  • 1. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries.
    Zhao S; Fan Y; Zhu K; Zhang D; Zhang W; Chen S; Liu R; Yao M; Liu B
    Nanoscale; 2015 Feb; 7(5):1984-93. PubMed ID: 25537984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure.
    Xiao J; Yao M; Zhu K; Zhang D; Zhao S; Lu S; Liu B; Cui W; Liu B
    Nanoscale; 2013 Nov; 5(22):11306-12. PubMed ID: 24096808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries.
    Lu Y; Wen Z; Jin J; Rui K; Wu X
    Phys Chem Chem Phys; 2014 May; 16(18):8556-62. PubMed ID: 24671146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries.
    Hou H; Cao X; Yang Y; Fang L; Pan C; Yang X; Song W; Ji X
    Chem Commun (Camb); 2014 Aug; 50(60):8201-3. PubMed ID: 24931575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries.
    Gao Q; Zhao X; Xiao Y; Zhao D; Cao M
    Nanoscale; 2014 Jun; 6(11):6151-7. PubMed ID: 24791274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures.
    Peng L; Zhang H; Fang L; Zhang Y; Wang Y
    Nanoscale; 2016 Jan; 8(4):2030-40. PubMed ID: 26699079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous TiO₂ spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries.
    Trang NT; Ali Z; Kang DJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3676-83. PubMed ID: 25633801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable cycle-activated capacity increasing in onion-like carbon nanospheres as lithium battery anode material.
    Dong J; Zhang T; Zhang D; Zhang W; Zhang H; Liu R; Yao M; Liu B
    Nanotechnology; 2017 Jan; 28(3):035704. PubMed ID: 27941221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.
    Bhattacharjya D; Park HY; Kim MS; Choi HS; Inamdar SN; Yu JS
    Langmuir; 2014 Jan; 30(1):318-24. PubMed ID: 24345084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions.
    Zhang S; Chowdari BV; Wen Z; Jin J; Yang J
    ACS Nano; 2015 Dec; 9(12):12464-72. PubMed ID: 26549425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.
    Wang Y; Xing G; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Aug; 6(15):8884-90. PubMed ID: 24962690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures.
    Zhang W; Zhou W; Wright JH; Kim YN; Liu D; Xiao X
    ACS Appl Mater Interfaces; 2014 May; 6(10):7292-300. PubMed ID: 24809928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries.
    Zhang Z; Wang Y; Tan Q; Zhong Z; Su F
    J Colloid Interface Sci; 2013 May; 398():185-92. PubMed ID: 23489612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.