BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25538034)

  • 1. Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors.
    Wang Z; Maity A; Luo Y; Neely ML; Tzeng JY
    Genet Epidemiol; 2015 Feb; 39(2):122-33. PubMed ID: 25538034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
    Verhulst B; Pritikin JN; Clifford J; Prom-Wormley E
    Behav Genet; 2021 May; 51(3):358-373. PubMed ID: 33899139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions.
    Gauderman WJ; Mukherjee B; Aschard H; Hsu L; Lewinger JP; Patel CJ; Witte JS; Amos C; Tai CG; Conti D; Torgerson DG; Lee S; Chatterjee N
    Am J Epidemiol; 2017 Oct; 186(7):762-770. PubMed ID: 28978192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unified powerful set-based test for sequencing data analysis of GxE interactions.
    Su YR; Di CZ; Hsu L;
    Biostatistics; 2017 Jan; 18(1):119-131. PubMed ID: 27474101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth-threshold multivariate genetic prediction incorporating gene-environment interactions.
    Ueki M; Tamiya G;
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34849749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
    Zhao G; Marceau R; Zhang D; Tzeng JY
    Genetics; 2015 Mar; 199(3):695-710. PubMed ID: 25585620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting rare and common haplotype-environment interaction under uncertainty of gene-environment independence assumption.
    Zhang Y; Lin S; Biswas S
    Biometrics; 2017 Mar; 73(1):344-355. PubMed ID: 27478935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Varying Coefficient Model to Jointly Test Genetic and Gene-Environment Interaction Effects.
    Zhou Z; Ku HC; Manning SE; Zhang M; Xing C
    Behav Genet; 2023 Jul; 53(4):374-382. PubMed ID: 36622576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?
    Simonds NI; Ghazarian AA; Pimentel CB; Schully SD; Ellison GL; Gillanders EM; Mechanic LE
    Genet Epidemiol; 2016 Jul; 40(5):356-65. PubMed ID: 27061572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.
    Broadaway KA; Duncan R; Conneely KN; Almli LM; Bradley B; Ressler KJ; Epstein MP
    Genet Epidemiol; 2015 Jul; 39(5):366-75. PubMed ID: 25885490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
    Marceau R; Lu W; Holloway S; Sale MM; Worrall BB; Williams SR; Hsu FC; Tzeng JY
    Genet Epidemiol; 2015 Sep; 39(6):456-68. PubMed ID: 26139508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic stochastic process model for genome-wide joint analysis of biomarker dynamics and disease susceptibility with longitudinal data.
    He L; Zhbannikov I; Arbeev KG; Yashin AI; Kulminski AM
    Genet Epidemiol; 2017 Nov; 41(7):620-635. PubMed ID: 28636232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Case-control studies of gene-environment interactions. When a case might not be the case.
    Lobach I; Sampson J; Alekseyenko A; Lobach S; Zhang L
    PLoS One; 2018; 13(8):e0201140. PubMed ID: 30133451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput allele-specific expression across 250 environmental conditions.
    Moyerbrailean GA; Richards AL; Kurtz D; Kalita CA; Davis GO; Harvey CT; Alazizi A; Watza D; Sorokin Y; Hauff N; Zhou X; Wen X; Pique-Regi R; Luca F
    Genome Res; 2016 Dec; 26(12):1627-1638. PubMed ID: 27934696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
    Cuevas J; Granato I; Fritsche-Neto R; Montesinos-Lopez OA; BurgueƱo J; Bandeira E Sousa M; Crossa J
    G3 (Bethesda); 2018 Mar; 8(4):1347-1365. PubMed ID: 29476023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional logistic regression approach to detecting gene by longitudinal environmental exposure interaction in a case-control study.
    Wei P; Tang H; Li D
    Genet Epidemiol; 2014 Nov; 38(7):638-51. PubMed ID: 25219575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meta-analysis approach with filtering for identifying gene-level gene-environment interactions.
    Wang J; Liu Q; Pierce BL; Huo D; Olopade OI; Ahsan H; Chen LS
    Genet Epidemiol; 2018 Jul; 42(5):434-446. PubMed ID: 29430690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Varying coefficient model for gene-environment interaction: a non-linear look.
    Ma S; Yang L; Romero R; Cui Y
    Bioinformatics; 2011 Aug; 27(15):2119-26. PubMed ID: 21690105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
    Domingue BW; Kanopka K; Mallard TT; Trejo S; Tucker-Drob EM
    Behav Genet; 2022 Jan; 52(1):56-64. PubMed ID: 34855050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust model-free approach for rare variants association studies incorporating gene-gene and gene-environmental interactions.
    Fan R; Lo SH
    PLoS One; 2013; 8(12):e83057. PubMed ID: 24358248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.