These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25538155)
1. Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Moon EH; Kim YS; Seo J; Lee S; Lee YJ; Oh SP Cardiovasc Res; 2015 Mar; 105(3):353-60. PubMed ID: 25538155 [TBL] [Abstract][Full Text] [Related]
2. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models--brief report. Garrido-Martin EM; Nguyen HL; Cunningham TA; Choe SW; Jiang Z; Arthur HM; Lee YJ; Oh SP Arterioscler Thromb Vasc Biol; 2014 Oct; 34(10):2232-6. PubMed ID: 25082229 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia. Hwan Kim Y; Vu PN; Choe SW; Jeon CJ; Arthur HM; Vary CPH; Lee YJ; Oh SP Circ Res; 2020 Oct; 127(9):1122-1137. PubMed ID: 32762495 [TBL] [Abstract][Full Text] [Related]
4. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Crist AM; Lee AR; Patel NR; Westhoff DE; Meadows SM Angiogenesis; 2018 May; 21(2):363-380. PubMed ID: 29460088 [TBL] [Abstract][Full Text] [Related]
5. Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Gkatzis K; Thalgott J; Dos-Santos-Luis D; Martin S; Lamandé N; Carette MF; Disch F; Snijder RJ; Westermann CJ; Mager JJ; Oh SP; Miquerol L; Arthur HM; Mummery CL; Lebrin F Arterioscler Thromb Vasc Biol; 2016 Apr; 36(4):707-17. PubMed ID: 26821948 [TBL] [Abstract][Full Text] [Related]
6. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions. Peacock HM; Caolo V; Jones EA Cardiovasc Res; 2016 Feb; 109(2):196-203. PubMed ID: 26645978 [TBL] [Abstract][Full Text] [Related]
7. Endoglin and activin receptor-like-kinase 1 are co-expressed in the distal vessels of the lung: implications for two familial vascular dysplasias, HHT and PAH. Mahmoud M; Borthwick GM; Hislop AA; Arthur HM Lab Invest; 2009 Jan; 89(1):15-25. PubMed ID: 19015642 [TBL] [Abstract][Full Text] [Related]
8. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Seki T; Yun J; Oh SP Circ Res; 2003 Oct; 93(7):682-9. PubMed ID: 12970115 [TBL] [Abstract][Full Text] [Related]
9. Decreased Expression of Vascular Endothelial Growth Factor Receptor 1 Contributes to the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Thalgott JH; Dos-Santos-Luis D; Hosman AE; Martin S; Lamandé N; Bracquart D; Srun S; Galaris G; de Boer HC; Tual-Chalot S; Kroon S; Arthur HM; Cao Y; Snijder RJ; Disch F; Mager JJ; Rabelink TJ; Mummery CL; Raymond K; Lebrin F Circulation; 2018 Dec; 138(23):2698-2712. PubMed ID: 30571259 [TBL] [Abstract][Full Text] [Related]
10. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Urness LD; Sorensen LK; Li DY Nat Genet; 2000 Nov; 26(3):328-31. PubMed ID: 11062473 [TBL] [Abstract][Full Text] [Related]
11. Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. Somekawa S; Imagawa K; Hayashi H; Sakabe M; Ioka T; Sato GE; Inada K; Iwamoto T; Mori T; Uemura S; Nakagawa O; Saito Y Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12064-9. PubMed ID: 22783020 [TBL] [Abstract][Full Text] [Related]
12. Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK1 mutations. Berg J; Porteous M; Reinhardt D; Gallione C; Holloway S; Umasunthar T; Lux A; McKinnon W; Marchuk D; Guttmacher A J Med Genet; 2003 Aug; 40(8):585-90. PubMed ID: 12920067 [TBL] [Abstract][Full Text] [Related]
13. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. Tual-Chalot S; Mahmoud M; Allinson KR; Redgrave RE; Zhai Z; Oh SP; Fruttiger M; Arthur HM PLoS One; 2014; 9(6):e98646. PubMed ID: 24896812 [TBL] [Abstract][Full Text] [Related]
15. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. Park SO; Wankhede M; Lee YJ; Choi EJ; Fliess N; Choe SW; Oh SH; Walter G; Raizada MK; Sorg BS; Oh SP J Clin Invest; 2009 Nov; 119(11):3487-96. PubMed ID: 19805914 [TBL] [Abstract][Full Text] [Related]
16. SMAD4 Deficiency Leads to Development of Arteriovenous Malformations in Neonatal and Adult Mice. Kim YH; Choe SW; Chae MY; Hong S; Oh SP J Am Heart Assoc; 2018 Nov; 7(21):e009514. PubMed ID: 30571376 [TBL] [Abstract][Full Text] [Related]
17. Enhanced responses to angiogenic cues underlie the pathogenesis of hereditary hemorrhagic telangiectasia 2. Choi EJ; Kim YH; Choe SW; Tak YG; Garrido-Martin EM; Chang M; Lee YJ; Oh SP PLoS One; 2013; 8(5):e63138. PubMed ID: 23675457 [TBL] [Abstract][Full Text] [Related]
18. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Srinivasan S; Hanes MA; Dickens T; Porteous ME; Oh SP; Hale LP; Marchuk DA Hum Mol Genet; 2003 Mar; 12(5):473-82. PubMed ID: 12588795 [TBL] [Abstract][Full Text] [Related]
19. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Park SO; Lee YJ; Seki T; Hong KH; Fliess N; Jiang Z; Park A; Wu X; Kaartinen V; Roman BL; Oh SP Blood; 2008 Jan; 111(2):633-42. PubMed ID: 17911384 [TBL] [Abstract][Full Text] [Related]
20. Global gene expression profiling of telangiectasial tissue from patients with hereditary hemorrhagic telangiectasia. Tørring PM; Larsen MJ; Kjeldsen AD; Ousager LB; Tan Q; Brusgaard K Microvasc Res; 2015 May; 99():118-26. PubMed ID: 25892364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]