These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25539048)

  • 1. Dynamically achieved active site precision in enzyme catalysis.
    Klinman JP
    Acc Chem Res; 2015 Feb; 48(2):449-56. PubMed ID: 25539048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on electrostatics and conformational motions in enzyme catalysis.
    Hanoian P; Liu CT; Hammes-Schiffer S; Benkovic S
    Acc Chem Res; 2015 Feb; 48(2):482-9. PubMed ID: 25565178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis.
    Meadows CW; Ou R; Klinman JP
    J Phys Chem B; 2014 Jun; 118(23):6049-61. PubMed ID: 24892947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond-resolved fluorescence studies of substrate and cofactor-binding domain mutants in a thermophilic alcohol dehydrogenase uncover an extended network of communication.
    Meadows CW; Tsang JE; Klinman JP
    J Am Chem Soc; 2014 Oct; 136(42):14821-33. PubMed ID: 25314615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects.
    Klinman JP; Offenbacher AR
    Acc Chem Res; 2018 Sep; 51(9):1966-1974. PubMed ID: 30152685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
    Kohen A
    Acc Chem Res; 2015 Feb; 48(2):466-73. PubMed ID: 25539442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases.
    Nagel ZD; Cun S; Klinman JP
    J Biol Chem; 2013 May; 288(20):14087-14097. PubMed ID: 23525111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition States and transition state analogue interactions with enzymes.
    Schramm VL
    Acc Chem Res; 2015 Apr; 48(4):1032-9. PubMed ID: 25848811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures.
    Nagel ZD; Meadows CW; Dong M; Bahnson BJ; Klinman JP
    Biochemistry; 2012 May; 51(20):4147-56. PubMed ID: 22568562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase.
    Liang ZX; Lee T; Resing KA; Ahn NG; Klinman JP
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9556-61. PubMed ID: 15210941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamical nature of enzymatic catalysis.
    Callender R; Dyer RB
    Acc Chem Res; 2015 Feb; 48(2):407-13. PubMed ID: 25539144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting and Characterizing the Kinetic Activation of Thermal Networks in Proteins: Thermal Transfer from a Distal, Solvent-Exposed Loop to the Active Site in Soybean Lipoxygenase.
    Zaragoza JPT; Nguy A; Minnetian N; Deng Z; Iavarone AT; Offenbacher AR; Klinman JP
    J Phys Chem B; 2019 Oct; 123(41):8662-8674. PubMed ID: 31580070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase.
    Vaughn MB; Zhang J; Spiro TG; Dyer RB; Klinman JP
    J Am Chem Soc; 2018 Jan; 140(3):900-903. PubMed ID: 29323490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preorganization and protein dynamics in enzyme catalysis.
    Rajagopalan PT; Benkovic SJ
    Chem Rec; 2002; 2(1):24-36. PubMed ID: 11933259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects.
    Hay S; Sutcliffe MJ; Scrutton NS
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):507-12. PubMed ID: 17202258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data.
    Doll KM; Finke RG
    Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.