These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25539393)

  • 1. Label-free measurement of amyloid elongation by suspended microchannel resonators.
    Wang Y; Modena MM; Platen M; Schaap IA; Burg TP
    Anal Chem; 2015 Feb; 87(3):1821-8. PubMed ID: 25539393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface.
    Lee JS; Um E; Park JK; Park CB
    Langmuir; 2008 Jul; 24(14):7068-71. PubMed ID: 18549255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of different processes in human insulin amyloid formation.
    Manno M; Craparo EF; Podestà A; Bulone D; Carrotta R; Martorana V; Tiana G; San Biagio PL
    J Mol Biol; 2007 Feb; 366(1):258-74. PubMed ID: 17157312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-directed self-assembly and growth of insulin amyloid fibrils.
    Ha C; Park CB
    Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric amyloid fibril elongation: a new perspective on a symmetric world.
    Heldt CL; Zhang S; Belfort G
    Proteins; 2011 Jan; 79(1):92-8. PubMed ID: 20941707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution.
    Modena MM; Wang Y; Riedel D; Burg TP
    Lab Chip; 2014 Jan; 14(2):342-50. PubMed ID: 24247122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties.
    Malisauskas M; Weise C; Yanamandra K; Wolf-Watz M; Morozova-Roche L
    J Mol Biol; 2010 Feb; 396(1):60-74. PubMed ID: 19913026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cosolute effects on amyloid aggregation in a nondiffusion limited regime: intrinsic osmolyte properties and the volume exclusion principle.
    Murray B; Rosenthal J; Zheng Z; Isaacson D; Zhu Y; Belfort G
    Langmuir; 2015 Apr; 31(14):4246-54. PubMed ID: 25803421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation.
    Jayamani J; Shanmugam G
    Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suspended microchannel resonators with piezoresistive sensors.
    Lee J; Chunara R; Shen W; Payer K; Babcock K; Burg TP; Manalis SR
    Lab Chip; 2011 Feb; 11(4):645-51. PubMed ID: 21180703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady-state kinetic analysis of the elongation of amyloid fibrils of beta(2)-microglobulin with tryptophan mutagenesis.
    Chatani E; Ohnishi R; Konuma T; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2010 Jul; 400(5):1057-66. PubMed ID: 20595042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation.
    Guo S; Akhremitchev BB
    Biomacromolecules; 2006 May; 7(5):1630-6. PubMed ID: 16677048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation.
    Foderà V; Cataldo S; Librizzi F; Pignataro B; Spiccia P; Leone M
    J Phys Chem B; 2009 Aug; 113(31):10830-7. PubMed ID: 19588943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei.
    Selivanova OM; Suvorina MY; Dovidchenko NV; Eliseeva IA; Surin AK; Finkelstein AV; Schmatchenko VV; Galzitskaya OV
    J Phys Chem B; 2014 Feb; 118(5):1198-206. PubMed ID: 24428561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin.
    Grudzielanek S; Jansen R; Winter R
    J Mol Biol; 2005 Aug; 351(4):879-94. PubMed ID: 16051271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid fibril formation from crude protein mixtures.
    Rao SP; Meade SJ; Joyce NI; Healy JP; Sutton KH; Larsen NG; Gerrard JA
    Biotechnol Prog; 2011; 27(6):1768-76. PubMed ID: 21910260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation.
    Kumar S; Udgaonkar JB
    J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring single cell mass, volume, and density with dual suspended microchannel resonators.
    Bryan AK; Hecht VC; Shen W; Payer K; Grover WH; Manalis SR
    Lab Chip; 2014 Feb; 14(3):569-576. PubMed ID: 24296901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.