BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25539667)

  • 1. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile.
    Pires RA; Abul-Haija YM; Costa DS; Novoa-Carballal R; Reis RL; Ulijn RV; Pashkuleva I
    J Am Chem Soc; 2015 Jan; 137(2):576-9. PubMed ID: 25539667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell Environment-Differentiated Self-Assembly of Nanofibers.
    Zheng Z; Chen P; Xie M; Wu C; Luo Y; Wang W; Jiang J; Liang G
    J Am Chem Soc; 2016 Sep; 138(35):11128-31. PubMed ID: 27532322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells.
    Zhou J; Du X; Yamagata N; Xu B
    J Am Chem Soc; 2016 Mar; 138(11):3813-23. PubMed ID: 26966844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytically triggered co-assembly of two-component core/shell nanofibers.
    Abul-Haija YM; Roy S; Frederix PW; Javid N; Jayawarna V; Ulijn RV
    Small; 2014 Mar; 10(5):973-9. PubMed ID: 24027125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance.
    Wang H; Feng Z; Wang Y; Zhou R; Yang Z; Xu B
    J Am Chem Soc; 2016 Dec; 138(49):16046-16055. PubMed ID: 27960313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopropulsion by biocatalytic self-assembly.
    Leckie J; Hope A; Hughes M; Debnath S; Fleming S; Wark AW; Ulijn RV; Haw MD
    ACS Nano; 2014 Sep; 8(9):9580-9. PubMed ID: 25162764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intranuclear assembly of leucine-rich peptides for selective death of osteosarcoma cells.
    Liu S; Zhang Q; Peng X; Hu C; Wang S; Sun Y
    Biomater Sci; 2024 Feb; 12(5):1274-1280. PubMed ID: 38251092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.
    Moreira IP; Sasselli IR; Cannon DA; Hughes M; Lamprou DA; Tuttle T; Ulijn RV
    Soft Matter; 2016 Mar; 12(9):2623-31. PubMed ID: 26905042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme Instructed Self-assembly of Naphthalimide-dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation.
    Chakravarthy RD; Mohammed M; Lin HC
    Chem Asian J; 2020 Sep; 15(17):2696-2705. PubMed ID: 32652888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB.
    Eliseev RA; Schwarz EM; Zuscik MJ; O'Keefe RJ; Drissi H; Rosier RN
    Exp Cell Res; 2006 Jan; 312(1):40-50. PubMed ID: 16259979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micelle to fibre biocatalytic supramolecular transformation of an aromatic peptide amphiphile.
    Sadownik JW; Leckie J; Ulijn RV
    Chem Commun (Camb); 2011 Jan; 47(2):728-30. PubMed ID: 21060923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline Phosphatase-Instructed Self-Assembly of Gadolinium Nanofibers for Enhanced T
    Dong L; Qian J; Hai Z; Xu J; Du W; Zhong K; Liang G
    Anal Chem; 2017 Jul; 89(13):6922-6925. PubMed ID: 28627868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective pericellular hydrogelation by the overexpression of an enzyme and a membrane receptor.
    Wang Y; Zhan J; Chen Y; Ai S; Li L; Wang L; Shi Y; Zheng J; Yang Z
    Nanoscale; 2019 Aug; 11(29):13714-13719. PubMed ID: 31314031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly.
    Debnath S; Roy S; Ulijn RV
    J Am Chem Soc; 2013 Nov; 135(45):16789-92. PubMed ID: 24147566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules.
    Haburcak R; Shi J; Du X; Yuan D; Xu B
    J Am Chem Soc; 2016 Nov; 138(47):15397-15404. PubMed ID: 27797504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GDC-0152 attenuates the malignant progression of osteosarcoma promoted by ANGPTL2 via PI3K/AKT but not p38MAPK signaling pathway.
    Yang L; Shu T; Liang Y; Gu W; Wang C; Song X; Fan C; Wang W
    Int J Oncol; 2015 Apr; 46(4):1651-8. PubMed ID: 25651778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive Seed Layer for Surface-Confined Self-Assembly of Peptides.
    Vigier-Carrière C; Garnier T; Wagner D; Lavalle P; Rabineau M; Hemmerlé J; Senger B; Schaaf P; Boulmedais F; Jierry L
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10198-201. PubMed ID: 26179465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and expression of rat osteosarcoma (ROS 17/2.8) alkaline phosphatase: product of a single copy gene.
    Thiede MA; Yoon K; Golub EE; Noda M; Rodan GA
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):319-23. PubMed ID: 3422431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaline Phosphatase-Triggered Simultaneous Hydrogelation and Chemiluminescence.
    Hai Z; Li J; Wu J; Xu J; Liang G
    J Am Chem Soc; 2017 Jan; 139(3):1041-1044. PubMed ID: 28064496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal alkaline phosphatase specific activity is an index of the osteoblastic phenotype in subpopulations of the human osteosarcoma cell line SaOS-2.
    Farley JR; Hall SL; Herring S; Tarbaux NM; Matsuyama T; Wergedal JE
    Metabolism; 1991 Jul; 40(7):664-71. PubMed ID: 1651438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.