These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25540005)
1. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Fedyaeva AV; Stepanov AV; Lyubushkina IV; Pobezhimova TP; Rikhvanov EG Biochemistry (Mosc); 2014 Nov; 79(11):1202-10. PubMed ID: 25540005 [TBL] [Abstract][Full Text] [Related]
2. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. Pyatrikas DV; Fedoseeva IV; Varakina NN; Rusaleva TM; Stepanov AV; Fedyaeva AV; Borovskii GB; Rikhvanov EG FEMS Microbiol Lett; 2015 Jun; 362(12):fnv082. PubMed ID: 25991811 [TBL] [Abstract][Full Text] [Related]
3. Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken. Azad MA; Kikusato M; Sudo S; Amo T; Toyomizu M Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):266-71. PubMed ID: 20656050 [TBL] [Abstract][Full Text] [Related]
4. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives. Wang Q; Guerrero F; Mazur A; Lambrechts K; Buzzacott P; Belhomme M; Theron M Med Sci Sports Exerc; 2015 Jul; 47(7):1362-71. PubMed ID: 25380471 [TBL] [Abstract][Full Text] [Related]
5. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Fedoseeva IV; Pyatrikas DV; Stepanov AV; Fedyaeva AV; Varakina NN; Rusaleva TM; Borovskii GB; Rikhvanov EG Sci Rep; 2017 May; 7(1):2586. PubMed ID: 28566714 [TBL] [Abstract][Full Text] [Related]
6. Heat shock response protects human peritoneal mesothelial cells from dialysate-induced oxidative stress and mitochondrial injury. Kuo HT; Chen HW; Hsiao HH; Chen HC Nephrol Dial Transplant; 2009 Jun; 24(6):1799-809. PubMed ID: 19126751 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of temperature on reactive oxygen/nitrogen species production in rat pachytene spermatocytes and round spermatids. Pino JA; Osses N; Oyarzún D; Farías JG; Moreno RD; Reyes JG Reproduction; 2013 Feb; 145(2):203-12. PubMed ID: 23241345 [TBL] [Abstract][Full Text] [Related]
8. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Yamamori T; Yasui H; Yamazumi M; Wada Y; Nakamura Y; Nakamura H; Inanami O Free Radic Biol Med; 2012 Jul; 53(2):260-70. PubMed ID: 22580337 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Slimen IB; Najar T; Ghram A; Dabbebi H; Ben Mrad M; Abdrabbah M Int J Hyperthermia; 2014 Nov; 30(7):513-23. PubMed ID: 25354680 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons. Parihar MS; Brewer GJ J Neurosci Res; 2007 Apr; 85(5):1018-32. PubMed ID: 17335078 [TBL] [Abstract][Full Text] [Related]
11. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells. Hsu YL; Yu HS; Lin HC; Wu KY; Yang RC; Kuo PL Exp Eye Res; 2011 Oct; 93(4):405-12. PubMed ID: 21712031 [TBL] [Abstract][Full Text] [Related]
12. Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat (Triticum aestivum L.). Kumar RR; Sharma SK; Rai GK; Singh K; Choudhury M; Dhawan Gaurav ; Singh GP; Goswami S; Pathak H; Rai RD Indian J Biochem Biophys; 2014 Oct; 51(5):396-406. PubMed ID: 25630110 [TBL] [Abstract][Full Text] [Related]
13. Adenosine induces apoptosis in human liver cancer cells through ROS production and mitochondrial dysfunction. Ma Y; Zhang J; Zhang Q; Chen P; Song J; Yu S; Liu H; Liu F; Song C; Yang D; Liu J Biochem Biophys Res Commun; 2014 May; 448(1):8-14. PubMed ID: 24727456 [TBL] [Abstract][Full Text] [Related]
14. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252 [TBL] [Abstract][Full Text] [Related]
15. Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses. Locato V; de Pinto MC; De Gara L Physiol Plant; 2009 Mar; 135(3):296-306. PubMed ID: 19236663 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species regulate Bax translocation and mitochondrial transmembrane potential, a possible mechanism for enhanced TRAIL-induced apoptosis by CCCP. Chaudhari AA; Seol JW; Kim SJ; Lee YJ; Kang HS; Kim IS; Kim NS; Park SY Oncol Rep; 2007 Jul; 18(1):71-6. PubMed ID: 17549348 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films. Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794 [TBL] [Abstract][Full Text] [Related]
18. [The effect of mitochondrial membrane potential on changes of reactive oxygen species and on proliferation of hypoxic human pulmonary arterial smooth muscle cells]. Hu HL; Wang T; Zhang ZX; Zhao JP; Xu YJ Zhonghua Jie He He Hu Xi Za Zhi; 2006 Nov; 29(11):727-30. PubMed ID: 17327050 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008 [TBL] [Abstract][Full Text] [Related]