BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25540238)

  • 1. Magnetoreception in birds: the effect of radio-frequency fields.
    Wiltschko R; Thalau P; Gehring D; Nießner C; Ritz T; Wiltschko W
    J R Soc Interface; 2015 Feb; 12(103):. PubMed ID: 25540238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avian magnetic compass can be tuned to anomalously low magnetic intensities.
    Winklhofer M; Dylda E; Thalau P; Wiltschko W; Wiltschko R
    Proc Biol Sci; 2013 Jul; 280(1763):20130853. PubMed ID: 23720547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
    Wiltschko R; Wiltschko W
    Biosensors (Basel); 2014 Sep; 4(3):221-42. PubMed ID: 25587420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field.
    Thalau P; Ritz T; Stapput K; Wiltschko R; Wiltschko W
    Naturwissenschaften; 2005 Feb; 92(2):86-90. PubMed ID: 15614508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
    Nießner C; Denzau S; Stapput K; Ahmad M; Peichl L; Wiltschko W; Wiltschko R
    J R Soc Interface; 2013 Nov; 10(88):20130638. PubMed ID: 23966619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of low-level RF fields reveal complex pattern of magnetic input to the avian magnetic compass.
    Muheim R; Phillips JB
    Sci Rep; 2023 Nov; 13(1):19970. PubMed ID: 37968316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.
    Kavokin K; Chernetsov N; Pakhomov A; Bojarinova J; Kobylkov D; Namozov B
    J R Soc Interface; 2014 Aug; 11(97):20140451. PubMed ID: 24942848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.
    Wiltschko R; Gehring D; Denzau S; Nießner C; Wiltschko W
    J Exp Biol; 2014 Dec; 217(Pt 23):4225-8. PubMed ID: 25472973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radio frequency magnetic fields disrupt magnetoreception in American cockroach.
    Vácha M; Puzová T; Kvícalová M
    J Exp Biol; 2009 Nov; 212(Pt 21):3473-7. PubMed ID: 19837889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Exp Biol; 2014 Dec; 217(Pt 23):4221-4. PubMed ID: 25472972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of radio frequency fields on the radical pair magnetoreception model.
    Xu BM; Zou J; Li H; Li JG; Shao B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042711. PubMed ID: 25375527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds.
    Leberecht B; Wong SY; Satish B; Döge S; Hindman J; Venkatraman L; Apte S; Haase K; Musielak I; Dautaj G; Solov'yov IA; Winklhofer M; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301153120. PubMed ID: 37399422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields.
    Malkemper EP; Eder SH; Begall S; Phillips JB; Winklhofer M; Hart V; Burda H
    Sci Rep; 2015 Apr; 4():9917. PubMed ID: 25923312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian magnetic compass: fast adjustment to intensities outside the normal functional window.
    Wiltschko W; Stapput K; Thalau P; Wiltschko R
    Naturwissenschaften; 2006 Jun; 93(6):300-4. PubMed ID: 16586120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic orientation of migratory robins, Erithacus rubecula, under long-wavelength light.
    Wiltschko R; Denzau S; Gehring D; Thalau P; Wiltschko W
    J Exp Biol; 2011 Sep; 214(Pt 18):3096-101. PubMed ID: 21865522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Magnetic Compass of Birds: The Role of Cryptochrome.
    Wiltschko R; Nießner C; Wiltschko W
    Front Physiol; 2021; 12():667000. PubMed ID: 34093230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The magnetic compass mechanisms of birds and rodents are based on different physical principles.
    Thalau P; Ritz T; Burda H; Wegner RE; Wiltschko R
    J R Soc Interface; 2006 Aug; 3(9):583-7. PubMed ID: 16849254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.