These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25540433)

  • 1. Fast protein-depletion system utilizing tetracycline repressible promoter and N-end rule in yeast.
    Gnanasundram SV; Koš M
    Mol Biol Cell; 2015 Feb; 26(4):762-8. PubMed ID: 25540433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necessity's sharp pinch.
    Chun KT; Goebl MG
    Mol Cell; 2004 Jul; 15(2):166-8. PubMed ID: 15260966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae.
    Garí E; Piedrafita L; Aldea M; Herrero E
    Yeast; 1997 Jul; 13(9):837-48. PubMed ID: 9234672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reference-based protein degradation assay without global translation inhibitors.
    Oh JH; Chen SJ; Varshavsky A
    J Biol Chem; 2017 Dec; 292(52):21457-21465. PubMed ID: 29122887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus.
    Pecota DC; Da Silva NA
    Biotechnol Bioeng; 2005 Oct; 92(1):117-23. PubMed ID: 15962338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual system to manipulate protein levels for DNA replication- and cell cycle-related studies.
    García-Rodríguez N; Ulrich HD
    Methods Enzymol; 2019; 619():121-143. PubMed ID: 30910018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat tyrosine hydroxylase promoter directs tetracycline-inducible foreign gene expression in dopaminergic cell types.
    Gardaneh M; O'Malley KL
    Brain Res Mol Brain Res; 2004 Jul; 126(2):173-80. PubMed ID: 15249141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system.
    Bellí G; Garí E; Aldea M; Herrero E
    Yeast; 1998 Sep; 14(12):1127-38. PubMed ID: 9778798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly controlled heterologous gene expression through combined utilization of the tetracycline-repressible transactivator and the lac repressor.
    Hoshikawa Y; Amimoto K; Mizuguchi R; Hatakeyama M
    Anal Biochem; 1998 Aug; 261(2):211-8. PubMed ID: 9716424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.
    Tanaka S; Miyazawa-Onami M; Iida T; Araki H
    Yeast; 2015 Aug; 32(8):567-81. PubMed ID: 26081484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation.
    Tyo KE; Nevoigt E; Stephanopoulos G
    Methods Enzymol; 2011; 497():135-55. PubMed ID: 21601085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of tetracycline-inducible conditional gene knockout cells in a human Nalm-6 cell line.
    Ono T; Nishijima H; Adachi N; Iiizumi S; Morohoshi A; Koyama H; Shibahara K
    J Biotechnol; 2009 Apr; 141(1-2):1-7. PubMed ID: 19135102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetracycline-inducible gene expression and gene deletion in Candida albicans.
    Park YN; Morschhäuser J
    Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin-dependent control of development in Saccharomyces cerevisiae.
    Laney JD; Hochstrasser M
    Curr Opin Microbiol; 2004 Dec; 7(6):647-54. PubMed ID: 15556038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rpd3p relocation mediates a transcriptional response to rapamycin in yeast.
    Humphrey EL; Shamji AF; Bernstein BE; Schreiber SL
    Chem Biol; 2004 Mar; 11(3):295-9. PubMed ID: 15123258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly controlled gene expression using combinations of a tissue-specific promoter, recombinant adenovirus and a tetracycline-regulatable transcription factor.
    Ghersa P; Gobert RP; Sattonnet-Roche P; Richards CA; Merlo Pich E; Hooft van Huijsduijnen R
    Gene Ther; 1998 Sep; 5(9):1213-20. PubMed ID: 9930322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q2N and S65D substitutions of ubiquitin unravel functional significance of the invariant residues Gln2 and Ser65.
    Mishra P; Prabha CR; Rao ChM; Volety S
    Cell Biochem Biophys; 2011 Dec; 61(3):619-28. PubMed ID: 21822753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tetracycline-responsive promoter system reveals the role of a secreted binding protein for FGFs during the early phase of tumor growth.
    Liaudet-Coopman ED; Schulte AM; Cardillo M; Wellstein A
    Biochem Biophys Res Commun; 1996 Dec; 229(3):930-7. PubMed ID: 8954996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering promoter regulation.
    Nevoigt E; Fischer C; Mucha O; Matthäus F; Stahl U; Stephanopoulos G
    Biotechnol Bioeng; 2007 Feb; 96(3):550-8. PubMed ID: 16964624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.