These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25540442)
1. Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects. Foyer CH; Verrall SR; Hancock RD J Exp Bot; 2015 Feb; 66(2):495-512. PubMed ID: 25540442 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
3. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. Lü BB; Li XJ; Sun WW; Li L; Gao R; Zhu Q; Tian SM; Fu MQ; Yu HL; Tang XM; Zhang CL; Dong HS Plant Biol (Stuttg); 2013 Sep; 15(5):841-50. PubMed ID: 23656500 [TBL] [Abstract][Full Text] [Related]
4. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. De Vos M; Van Oosten VR; Van Poecke RM; Van Pelt JA; Pozo MJ; Mueller MJ; Buchala AJ; Métraux JP; Van Loon LC; Dicke M; Pieterse CM Mol Plant Microbe Interact; 2005 Sep; 18(9):923-37. PubMed ID: 16167763 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Divol F; Vilaine F; Thibivilliers S; Kusiak C; Sauge MH; Dinant S Plant Cell Environ; 2007 Feb; 30(2):187-201. PubMed ID: 17238910 [TBL] [Abstract][Full Text] [Related]
9. Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (Brevicoryne brassicae) attack. Kuśnierczyk A; Tran DH; Winge P; Jørstad TS; Reese JC; Troczyńska J; Bones AM BMC Genomics; 2011 Aug; 12():423. PubMed ID: 21854623 [TBL] [Abstract][Full Text] [Related]
10. Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Pineda A; Zheng SJ; van Loon JJ; Dicke M Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():83-90. PubMed ID: 22348327 [TBL] [Abstract][Full Text] [Related]
11. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Mewis I; Appel HM; Hom A; Raina R; Schultz JC Plant Physiol; 2005 Jun; 138(2):1149-62. PubMed ID: 15923339 [TBL] [Abstract][Full Text] [Related]
12. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar. Rohr F; Ulrichs C; Schreiner M; Zrenner R; Mewis I Plant Physiol Biochem; 2012 Jun; 55():52-9. PubMed ID: 22543106 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Kempema LA; Cui X; Holzer FM; Walling LL Plant Physiol; 2007 Feb; 143(2):849-65. PubMed ID: 17189325 [TBL] [Abstract][Full Text] [Related]
14. Biochemistry and molecular biology of Arabidopsis-aphid interactions. de Vos M; Kim JH; Jander G Bioessays; 2007 Sep; 29(9):871-83. PubMed ID: 17691101 [TBL] [Abstract][Full Text] [Related]
15. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Mewis I; Tokuhisa JG; Schultz JC; Appel HM; Ulrichs C; Gershenzon J Phytochemistry; 2006 Nov; 67(22):2450-62. PubMed ID: 17049571 [TBL] [Abstract][Full Text] [Related]
16. Local and systemic transcriptional responses to crosstalk between above- and belowground herbivores in Arabidopsis thaliana. Kutyniok M; Viehhauser A; Vogel MO; Dietz KJ; Müller C Plant Signal Behav; 2014; 9(11):e976113. PubMed ID: 25482783 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Thompson GA; Goggin FL J Exp Bot; 2006; 57(4):755-66. PubMed ID: 16495409 [TBL] [Abstract][Full Text] [Related]
18. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. Oberländer J; Lortzing V; Hilker M; Kunze R BMC Plant Biol; 2019 Aug; 19(1):338. PubMed ID: 31375063 [TBL] [Abstract][Full Text] [Related]
19. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Casteel CL; Yang C; Nanduri AC; De Jong HN; Whitham SA; Jander G Plant J; 2014 Feb; 77(4):653-63. PubMed ID: 24372679 [TBL] [Abstract][Full Text] [Related]
20. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Poelman EH; Broekgaarden C; Van Loon JJ; Dicke M Mol Ecol; 2008 Jul; 17(14):3352-65. PubMed ID: 18565114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]