These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 25540473)
1. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches. Glithero NJ; Ramsden SJ; Wilson P Agric Syst; 2012 Jun; 109():53-64. PubMed ID: 25540473 [TBL] [Abstract][Full Text] [Related]
2. Straw use and availability for second generation biofuels inĀ England. Glithero NJ; Wilson P; Ramsden SJ Biomass Bioenergy; 2013 Aug; 55():311-321. PubMed ID: 27667905 [TBL] [Abstract][Full Text] [Related]
3. Relating the carbon footprint of milk from Irish dairy farms to economic performance. O'Brien D; Hennessy T; Moran B; Shalloo L J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524 [TBL] [Abstract][Full Text] [Related]
4. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective. Glithero NJ; Ramsden SJ; Wilson P Energy Policy; 2013 Aug; 59(100):161-171. PubMed ID: 24926116 [TBL] [Abstract][Full Text] [Related]
5. Analysing reduced tillage practices within a bio-economic modelling framework. Townsend TJ; Ramsden SJ; Wilson P Agric Syst; 2016 Jul; 146():91-102. PubMed ID: 27375318 [TBL] [Abstract][Full Text] [Related]
6. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related]
7. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
8. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Li SH; Guo LJ; Cao CG; Li CF Environ Sci Pollut Res Int; 2021 Feb; 28(5):5742-5754. PubMed ID: 32974819 [TBL] [Abstract][Full Text] [Related]
9. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
10. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England. Glithero NJ; Wilson P; Ramsden SJ Appl Energy; 2013 Jul; 107(100):209-218. PubMed ID: 23825896 [TBL] [Abstract][Full Text] [Related]
11. Carbon savings from sugarcane straw-derived bioenergy: Insights from a life cycle perspective including soil carbon changes. Bordonal RO; Tenelli S; da Silva Oliveira DM; Chagas MF; Cherubin MR; Weiler DA; Campbell E; Gonzaga LC; Barbosa LC; Cerri CEP; Carvalho JLN Sci Total Environ; 2024 Oct; 947():174670. PubMed ID: 39002600 [TBL] [Abstract][Full Text] [Related]
12. Sustainable bioenergy production from marginal lands in the US Midwest. Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409 [TBL] [Abstract][Full Text] [Related]
13. Implications of wheat straw logistic systems for bioenergy sustainable development in China: Costs, energy consumption, and GHG emissions. Fang YR; Shi W; Xie GH Sci Total Environ; 2022 Sep; 837():155633. PubMed ID: 35550895 [TBL] [Abstract][Full Text] [Related]
14. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers. Wilson P; Glithero NJ; Ramsden SJ Energy Policy; 2014 Nov; 74():101-110. PubMed ID: 25844008 [TBL] [Abstract][Full Text] [Related]
15. Economic and Environmental Assessment of Seed and Rhizome Propagated Hastings A; Mos M; Yesufu JA; McCalmont J; Schwarz K; Shafei R; Ashman C; Nunn C; Schuele H; Cosentino S; Scalici G; Scordia D; Wagner M; Clifton-Brown J Front Plant Sci; 2017; 8():1058. PubMed ID: 28713395 [TBL] [Abstract][Full Text] [Related]
16. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
17. Life cycle inventory of Miscanthus production on a commercial farm in the US. Adler PR Front Plant Sci; 2023; 14():1029141. PubMed ID: 37575930 [TBL] [Abstract][Full Text] [Related]
18. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits. Yan M; Cheng K; Yue Q; Yan Y; Rees RM; Pan G Environ Sci Pollut Res Int; 2016 Mar; 23(5):4681-91. PubMed ID: 26527344 [TBL] [Abstract][Full Text] [Related]
19. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
20. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]