BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 2554117)

  • 21. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity.
    Pentyala S; Ruggeri J; Veerraju A; Yu Z; Bhatia A; Desaiah D; Vig P
    Indian J Exp Biol; 2010 Jul; 48(7):737-43. PubMed ID: 20929057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Ca2+ release from heterogeneous Ca2+ stores in sarcoplasmic reticulum isolated from arterial and gastric smooth muscle.
    Stout MA; Raeymaekers L; De Smedt H; Casteels R
    Can J Physiol Pharmacol; 2002 Jun; 80(6):588-603. PubMed ID: 12117308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscles after treatment with caffeine].
    Men'shikova EV; Ritov VB
    Biokhimiia; 1986 Apr; 51(4):603-11. PubMed ID: 2423142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium release from aortic sarcoplasmic reticulum.
    Watras J; Benevolensky D; Childs C
    J Mol Cell Cardiol; 1989 Feb; 21 Suppl 1():125-30. PubMed ID: 2543822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitors of inositol trisphosphate-induced Ca2+ release from isolated platelet membrane vesicles.
    Seiler SM; Arnold AJ; Stanton HC
    Biochem Pharmacol; 1987 Oct; 36(20):3331-7. PubMed ID: 3499904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The specific GTP requirement for inositol 1,4,5-trisphosphate-induced Ca2+ release from skinned vascular smooth muscle.
    Saida K; Twort C; van Breemen C
    J Cardiovasc Pharmacol; 1988; 12 Suppl 5():S47-50. PubMed ID: 2469878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of mefloquine on Ca2+ uptake and release by dog brain microsomes.
    Lee HS; Go ML
    Arch Int Pharmacodyn Ther; 1996; 331(3):221-31. PubMed ID: 9124995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of caffeine-, IP3- and vanadate-sensitive Ca2+ pools in acinar cells of the exocrine pancreas.
    Dehlinger-Kremer M; Zeuzem S; Schulz I
    J Membr Biol; 1991 Jan; 119(1):85-100. PubMed ID: 2008014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A G-protein of sarcoplasmic reticulum of skeletal muscle is activated by caffeine or inositol trisphosphate.
    Hasegawa T; Kumagai S
    FEBS Lett; 1989 Feb; 244(2):283-6. PubMed ID: 2537755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of caffeine on the Ca2+-transport function of sarcoplasmic reticulum vesicles in the rat myocardium].
    Benevolenskiĭ DS; Men'shikova EV; Levitskiĭ DO; Ritov VB; Kozlov IuP
    Biull Eksp Biol Med; 1985 Sep; 100(9):315-7. PubMed ID: 2412614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic sarcoplasmic reticulum vesicles.
    Watras J; Benevolensky D
    Biochim Biophys Acta; 1987 Dec; 931(3):354-63. PubMed ID: 2445386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of calcium release and sequestration in eggs of Chaetopterus pergamentaceus.
    Thomas TW; Eckberg WR; Dubé F; Galione A
    Cell Calcium; 1998 Oct; 24(4):285-92. PubMed ID: 9883282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic basis of quantal calcium release from intracellular calcium stores.
    Mészáros LG; Zahradnikova A; Volpe P
    Cell Calcium; 1998 Jan; 23(1):43-52. PubMed ID: 9570009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release.
    Kline JT; Kline D
    Biol Reprod; 1994 Jan; 50(1):193-203. PubMed ID: 8312443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of carbon tetrachloride on inositol 1,4,5-trisphosphate dependent and independent regulation of rat brain microsomal Ca2+ flux.
    Pentyala SN; Vig PJ; Sekhon BS; Desaiah D
    Cell Signal; 1994 Jul; 6(5):561-7. PubMed ID: 7818992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacological characterization of inositol-1,4,5,-trisphosphate binding to membranes from retina and retinal cultures.
    López-Colomé AM; Lee I
    J Neurosci Res; 1996 Apr; 44(2):149-56. PubMed ID: 8723223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa.
    Silverman-Gavrila LB; Lew RR
    Eur J Cell Biol; 2001 Jun; 80(6):379-90. PubMed ID: 11484929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. H+ uptake increases GTP-induced connection of inositol 1,4,5-trisphosphate- and caffeine-sensitive calcium pools in pancreatic microsomal vesicles.
    Ozawa T; Schulz I
    Biochem Biophys Res Commun; 1991 Oct; 180(2):755-64. PubMed ID: 1835385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates.
    Clapper DL; Lee HC
    J Biol Chem; 1985 Nov; 260(26):13947-54. PubMed ID: 2414285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of halothane on sarcoplasmic reticulum calcium release channels in porcine airway smooth muscle cells.
    Pabelick CM; Prakash YS; Kannan MS; Warner DO; Sieck GC
    Anesthesiology; 2001 Jul; 95(1):207-15. PubMed ID: 11465560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.