BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25541212)

  • 1. Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
    Wen AM; Infusino M; De Luca A; Kernan DL; Czapar AE; Strangi G; Steinmetz NF
    Bioconjug Chem; 2015 Jan; 26(1):51-62. PubMed ID: 25541212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Silica Mineralization on Viral Templates.
    Dickmeis C; Altintoprak K; van Rijn P; Wege C; Commandeur U
    Methods Mol Biol; 2018; 1776():337-362. PubMed ID: 29869253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer.
    Bruckman MA; Czapar AE; VanMeter A; Randolph LN; Steinmetz NF
    J Control Release; 2016 Jun; 231():103-13. PubMed ID: 26941034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interior engineering of a viral nanoparticle and its tumor homing properties.
    Wen AM; Shukla S; Saxena P; Aljabali AA; Yildiz I; Dey S; Mealy JE; Yang AC; Evans DJ; Lomonossoff GP; Steinmetz NF
    Biomacromolecules; 2012 Dec; 13(12):3990-4001. PubMed ID: 23121655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials.
    Love AJ; Makarov V; Yaminsky I; Kalinina NO; Taliansky ME
    Virology; 2014 Jan; 449():133-9. PubMed ID: 24418546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of viral nanoparticles for efficient intracellular delivery.
    Wu Z; Chen K; Yildiz I; Dirksen A; Fischer R; Dawson PE; Steinmetz NF
    Nanoscale; 2012 Jun; 4(11):3567-76. PubMed ID: 22508503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles.
    Soto CM; Blum AS; Vora GJ; Lebedev N; Meador CE; Won AP; Chatterji A; Johnson JE; Ratna BR
    J Am Chem Soc; 2006 Apr; 128(15):5184-9. PubMed ID: 16608355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery.
    Yildiz I; Lee KL; Chen K; Shukla S; Steinmetz NF
    J Control Release; 2013 Dec; 172(2):568-78. PubMed ID: 23665254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical conjugation of heterologous proteins on the surface of Cowpea mosaic virus.
    Chatterji A; Ochoa W; Shamieh L; Salakian SP; Wong SM; Clinton G; Ghosh P; Lin T; Johnson JE
    Bioconjug Chem; 2004; 15(4):807-13. PubMed ID: 15264868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology.
    Steinmetz NF; Lin T; Lomonossoff GP; Johnson JE
    Curr Top Microbiol Immunol; 2009; 327():23-58. PubMed ID: 19198569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Functionalized Virus-Gold Nanoparticle Clusters for Biosensing.
    Soto CM; Dressick WJ
    Methods Mol Biol; 2018; 1776():533-552. PubMed ID: 29869264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery.
    Marín-Caba L; Chariou PL; Pesquera C; Correa-Duarte MA; Steinmetz NF
    Langmuir; 2019 Jan; 35(1):203-211. PubMed ID: 30576145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs).
    Rae C; Koudelka KJ; Destito G; Estrada MN; Gonzalez MJ; Manchester M
    PLoS One; 2008 Oct; 3(10):e3315. PubMed ID: 18830402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Plant Virus-Based Thin Films to Modulate the Osteogenic Differentiation of Mesenchymal Stem Cells.
    Metavarayuth K; Nguyen HG; Wang Q
    Methods Mol Biol; 2018; 1776():609-627. PubMed ID: 29869269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered viral nanoparticles for flow cytometry and fluorescence microscopy applications.
    Robertson KL; Liu JL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(5):511-24. PubMed ID: 22700447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates.
    Pitek AS; Wen AM; Shukla S; Steinmetz NF
    Small; 2016 Apr; 12(13):1758-69. PubMed ID: 26853911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
    Pitek AS; Jameson SA; Veliz FA; Shukla S; Steinmetz NF
    Biomaterials; 2016 May; 89():89-97. PubMed ID: 26950168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confined chromophores in tobacco mosaic virus to mimic green fluorescent protein.
    Zhou Q; Wu F; Wu M; Tian Y; Niu Z
    Chem Commun (Camb); 2015 Oct; 51(82):15122-4. PubMed ID: 26323209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on the VNP In Vivo Fates.
    Pitek AS; Veliz FA; Jameson SA; Steinmetz NF
    Methods Mol Biol; 2018; 1776():591-608. PubMed ID: 29869268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.