These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25541462)

  • 1. Development of cultivation strategies for friulimicin production in Actinoplanes friuliensis.
    Steinkämper A; Schmid J; Schwartz D; Biener R
    J Biotechnol; 2015 Feb; 195():52-9. PubMed ID: 25541462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of RegA, a pathway-specific regulator of the friulimicin biosynthesis in Actinoplanes friuliensis.
    Nolden S; Wagner N; Biener R; Schwartz D
    J Biotechnol; 2009 Mar; 140(1-2):99-106. PubMed ID: 19159651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acyl-CoA dehydrogenase is involved in the formation of the Delta cis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis.
    Heinzelmann E; Berger S; Müller C; Härtner T; Poralla K; Wohlleben W; Schwartz D
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1963-1974. PubMed ID: 15942003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis.
    Müller C; Nolden S; Gebhardt P; Heinzelmann E; Lange C; Puk O; Welzel K; Wohlleben W; Schwartz D
    Antimicrob Agents Chemother; 2007 Mar; 51(3):1028-37. PubMed ID: 17220414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate.
    Schneider T; Gries K; Josten M; Wiedemann I; Pelzer S; Labischinski H; Sahl HG
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1610-8. PubMed ID: 19164139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of transcriptional activities of heterologous promoters in the rare actinomycete Actinoplanes friuliensis.
    Wagner N; Osswald C; Biener R; Schwartz D
    J Biotechnol; 2009 Jul; 142(3-4):200-4. PubMed ID: 19464328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A glutamate mutase is involved in the biosynthesis of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis.
    Heinzelmann E; Berger S; Puk O; Reichenstein B; Wohlleben W; Schwartz D
    Antimicrob Agents Chemother; 2003 Feb; 47(2):447-57. PubMed ID: 12543643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG 010964, producer of the lipopeptide antibiotic friulimycin.
    Rückert C; Szczepanowski R; Albersmeier A; Goesmann A; Fischer N; Steinkämper A; Pühler A; Biener R; Schwartz D; Kalinowski J
    J Biotechnol; 2014 May; 178():41-2. PubMed ID: 24637369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production.
    Wang YJ; Liu LL; Wang YS; Xue YP; Zheng YG; Shen YC
    Bioresour Technol; 2012 Jan; 103(1):337-42. PubMed ID: 22029955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model membrane approaches to determine the role of calcium for the antimicrobial activity of friulimicin.
    Reder-Christ K; Falkenstein-Paul H; Klocek G; Al-Kaddah S; Bakowsky U; Bendas G
    Int J Antimicrob Agents; 2011 Mar; 37(3):256-60. PubMed ID: 21306875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system.
    Vázquez-Ramírez D; Jordan I; Sandig V; Genzel Y; Reichl U
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3025-3035. PubMed ID: 30796494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of extracellular bifidogenic growth stimulator (BGS) from Propionibacterium shermanii using a bioreactor system with a microfiltration module and an on-line controller for lactic acid concentration.
    Kouya T; Tobita K; Horiuchi M; Nakayama E; Deguchi H; Tanaka T; Taniguchi M
    J Biosci Bioeng; 2008 Mar; 105(3):184-91. PubMed ID: 18397766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airlift bioreactor-based strategies for prolonged semi-continuous cultivation of edible Agaricomycetes.
    Cerrone F; Lochlainn CÓ; Callaghan T; McDonald P; O'Connor KE
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):377. PubMed ID: 38888638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of feeding strategies on lipid production by Lipomyces starkeyi.
    Anschau A; Xavier MC; Hernalsteens S; Franco TT
    Bioresour Technol; 2014 Apr; 157():214-22. PubMed ID: 24556374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin.
    Taurino C; Frattini L; Marcone GL; Gastaldo L; Marinelli F
    Microb Cell Fact; 2011 Oct; 10():82. PubMed ID: 22008254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production.
    Li T; Zheng Y; Yu L; Chen S
    Bioresour Technol; 2013 Mar; 131():60-7. PubMed ID: 23340103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system.
    Glazyrina J; Krause M; Junne S; Glauche F; Storm D; Neubauer P
    N Biotechnol; 2012 Jan; 29(2):235-42. PubMed ID: 22100433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16.
    Choi BT; Shin CS
    Biotechnol Prog; 2003; 19(6):1677-82. PubMed ID: 14656141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.
    Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R
    Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.