BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25541526)

  • 1. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.
    Sun B; Song S; Hao CZ; Huang WX; Liu CC; Xie HL; Lin B; Cheng MS; Zhao DM
    J Mol Graph Model; 2015 Mar; 56():10-9. PubMed ID: 25541526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First chemical feature-based pharmacophore modeling of potent retinoidal retinoic acid metabolism blocking agents (RAMBAs): identification of novel RAMBA scaffolds.
    Purushottamachar P; Patel JB; Gediya LK; Clement OO; Njar VC
    Eur J Med Chem; 2012 Jan; 47(1):412-23. PubMed ID: 22130607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposomal delivery of hydrophobic RAMBAs provides good bioavailability and significant enhancement of retinoic acid signalling in neuroblastoma tumour cells.
    Bilip M; Shah S; Mathiyalakan M; Tagalakis AD; Hart SL; Maeshima R; Eaton S; Orford M; Irving E; Di Florio A; Simons C; Stoker AW
    J Drug Target; 2020 Jul; 28(6):643-654. PubMed ID: 31903789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice.
    Huynh CK; Brodie AM; Njar VC
    Br J Cancer; 2006 Feb; 94(4):513-23. PubMed ID: 16449997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy.
    Osanai M; Takasawa A; Takasawa K; Kyuno D; Ono Y; Magara K
    Med Mol Morphol; 2023 Mar; 56(1):1-10. PubMed ID: 36592231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metformin reduces hepatocarcinogenesis by inducing downregulation of Cyp26a1 and CD8
    He W; Wang X; Chen M; Li C; Chen W; Pan L; Cui Y; Yu Z; Wu G; Yang Y; Xu M; Dong Z; Ma K; Wang J; He Z
    Clin Transl Med; 2023 Nov; 13(11):e1465. PubMed ID: 37997519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Function Analysis of the Essential
    Padayachee T; Lamb DC; Nelson DR; Syed K
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of CYP26 enzymes in retinoic acid clearance.
    Thatcher JE; Isoherranen N
    Expert Opin Drug Metab Toxicol; 2009 Aug; 5(8):875-86. PubMed ID: 19519282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of thyroid hormone and its structurally similar contaminant bisphenol S exposure on retinoid metabolism in zebrafish larval eyes.
    Qiu L; Wei S; Wang Y; Zhang R; Ru S; Zhang X
    Environ Int; 2023 Oct; 180():108217. PubMed ID: 37748373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacophore-Based Virtual Screening of Novel Inhibitors and Docking Analysis for CYP51A from Penicillium italicum.
    Yuan Y; Han R; Cao Q; Yu J; Mao J; Zhang T; Wang S; Niu Y; Liu D
    Mar Drugs; 2017 Apr; 15(4):. PubMed ID: 28379163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling inhibition of avian aromatase by azole pesticides.
    Saxena AK; Devillers J; Bhunia SS; Bro E
    SAR QSAR Environ Res; 2015; 26(7-9):757-82. PubMed ID: 26535448
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Facey COB; Hunsu VO; Zhang C; Osmond B; Opdenaker LM; Boman BM
    Cancers (Basel); 2024 Jan; 16(2):. PubMed ID: 38254755
    [No Abstract]   [Full Text] [Related]  

  • 13. Galeon: A Biologically Active Molecule with In Silico Metabolite Prediction, In Vitro Metabolic Profiling in Rat Liver Microsomes, and In Silico Binding Mechanisms with CYP450 Isoforms.
    Rahman AFMM; Yin W; Kadi AA; Jahng Y
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2 D - QSAR studies on CYP26A1 inhibitory activity of 1-[benzofuran-2-yl-(4-alkyl/aryl-phenyl)-methyl]- 1 H-triazoles.
    Yadav M
    Bioinformation; 2011; 7(8):388-92. PubMed ID: 22347780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Homology Model of the Human all-trans Retinoic Acid Metabolizing Enzyme CYP26A1.
    Awadalla MK; Alshammari TM; Eriksson LA; Saenz-Méndez P
    Molecules; 2016 Mar; 21(3):351. PubMed ID: 26999080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of antifungal dual-target (SE, CYP51) pharmacophore models and the discovery of novel antifungal inhibitors.
    Dong Y; Liu M; Wang J; Ding Z; Sun B
    RSC Adv; 2019 Aug; 9(45):26302-26314. PubMed ID: 35531010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases.
    Isoherranen N; Zhong G
    Pharmacol Ther; 2019 Dec; 204():107400. PubMed ID: 31419517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits.
    Rendic SP; Peter Guengerich F
    Drug Metab Rev; 2018 Aug; 50(3):256-342. PubMed ID: 30717606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the ligand binding site of CYP2C8 with CYP26A1 and CYP26B1: a structural basis for the identification of new inhibitors of the retinoic acid hydroxylases.
    Foti RS; Diaz P; Douguet D
    J Enzyme Inhib Med Chem; 2016; 31(sup2):148-161. PubMed ID: 27424662
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.