These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25541615)

  • 1. SELF-GENERATED ACTIONS DURING LEARNING OBJECTS AND SOUNDS CREATE SENSORI-MOTOR SYSTEMS IN THE DEVELOPING BRAIN.
    James KH; Bose P
    Cogn Brain Behav; 2011; 15(4):485-503. PubMed ID: 25541615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Only self-generated actions create sensori-motor systems in the developing brain.
    James KH; Swain SN
    Dev Sci; 2011 Jul; 14(4):673-8. PubMed ID: 21676088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.
    Butler AJ; James KH
    J Cogn Neurosci; 2013 Feb; 25(2):203-18. PubMed ID: 22905816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.
    Butler AJ; James TW; James KH
    J Cogn Neurosci; 2011 Nov; 23(11):3515-28. PubMed ID: 21452947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.
    Ross B; Barat M; Fujioka T
    J Neurosci; 2017 Jun; 37(24):5948-5959. PubMed ID: 28539421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced auditory evoked activity to self-generated sounds is mediated by primary and supplementary motor cortices.
    Reznik D; Ossmy O; Mukamel R
    J Neurosci; 2015 Feb; 35(5):2173-80. PubMed ID: 25653372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EFFECTS OF SENSORI-MOTOR LEARNING ON MELODY PROCESSING ACROSS DEVELOPMENT.
    Wakefield EM; James KH
    Cogn Brain Behav; 2011 Dec; 15(4):505-534. PubMed ID: 25653926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensori-Motor Learning with Movement Sonification: Perspectives from Recent Interdisciplinary Studies.
    Bevilacqua F; Boyer EO; Françoise J; Houix O; Susini P; Roby-Brami A; Hanneton S
    Front Neurosci; 2016; 10():385. PubMed ID: 27610071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Losing the sound of concepts: damage to auditory association cortex impairs the processing of sound-related concepts.
    Trumpp NM; Kliese D; Hoenig K; Haarmeier T; Kiefer M
    Cortex; 2013 Feb; 49(2):474-86. PubMed ID: 22405961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor intention determines sensory attenuation of brain responses to self-initiated sounds.
    Timm J; SanMiguel I; Keil J; Schröger E; Schönwiesner M
    J Cogn Neurosci; 2014 Jul; 26(7):1481-9. PubMed ID: 24392902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of actions in auditory object discrimination.
    De Lucia M; Camen C; Clarke S; Murray MM
    Neuroimage; 2009 Nov; 48(2):475-85. PubMed ID: 19559091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency.
    Timm J; Schönwiesner M; Schröger E; SanMiguel I
    Cortex; 2016 Jul; 80():5-20. PubMed ID: 27137101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoting the perception of two and three concurrent sound objects: An event-related potential study.
    Kocsis Z; Winkler I; Bendixen A; Alain C
    Int J Psychophysiol; 2016 Sep; 107():16-28. PubMed ID: 27374254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory representation of learned sound sequences in motor regions of the macaque brain.
    Archakov D; DeWitt I; Kuśmierek P; Ortiz-Rios M; Cameron D; Cui D; Morin EL; VanMeter JW; Sams M; Jääskeläinen IP; Rauschecker JP
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15242-15252. PubMed ID: 32541016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Exploration of Enclosed Spaces through Echolocation.
    Flanagin VL; Schörnich S; Schranner M; Hummel N; Wallmeier L; Wahlberg M; Stephan T; Wiegrebe L
    J Neurosci; 2017 Feb; 37(6):1614-1627. PubMed ID: 28073936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When sounds become actions: higher-order representation of newly learned action sounds in the human motor system.
    Ticini LF; Schütz-Bosbach S; Weiss C; Casile A; Waszak F
    J Cogn Neurosci; 2012 Feb; 24(2):464-74. PubMed ID: 21916562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hearing, self-motion perception, mobility, and aging.
    Campos J; Ramkhalawansingh R; Pichora-Fuller MK
    Hear Res; 2018 Nov; 369():42-55. PubMed ID: 29661612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of brief sticky mittens training that lead to increases in object exploration.
    Needham AW; Wiesen SE; Hejazi JN; Libertus K; Christopher C
    J Exp Child Psychol; 2017 Dec; 164():209-224. PubMed ID: 28552388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.
    Tettamanti M; Conca F; Falini A; Perani D
    J Neurosci; 2017 Nov; 37(44):10712-10724. PubMed ID: 28978664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incidental or Intentional? Different Brain Responses to One's Own Action Sounds in Hurdling vs. Tap Dancing.
    Heins N; Pomp J; Kluger DS; Trempler I; Zentgraf K; Raab M; Schubotz RI
    Front Neurosci; 2020; 14():483. PubMed ID: 32477059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.