These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25541627)

  • 21. Poroelastic properties of bovine vertebral trabecular bone.
    Lim TH; Hong JH
    J Orthop Res; 2000 Jul; 18(4):671-7. PubMed ID: 11052505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of Poisson's ratio of articular cartilage by indentation using different-sized indenters.
    Jin H; Lewis JL
    J Biomech Eng; 2004 Apr; 126(2):138-45. PubMed ID: 15179843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using regression models to determine the poroelastic properties of cartilage.
    Chung CY; Mansour JM
    J Biomech; 2013 Jul; 46(11):1921-7. PubMed ID: 23796400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.
    Li X; von Holst H; Kleiven S
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1330-43. PubMed ID: 22452461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension.
    LeRoux MA; Setton LA
    J Biomech Eng; 2002 Jun; 124(3):315-21. PubMed ID: 12071267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements.
    Go SA; Jensen ER; O'Connor SM; Evertz LQ; Morrow DA; Ward SR; Lieber RL; Kaufman KR
    Ann Biomed Eng; 2017 Mar; 45(3):739-746. PubMed ID: 27495350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How does tissue preparation affect skeletal muscle transverse isotropy?
    Wheatley BB; Odegard GM; Kaufman KR; Donahue TLH
    J Biomech; 2016 Sep; 49(13):3056-3060. PubMed ID: 27425557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inversion Method of the Young's Modulus Field and Poisson's Ratio Field for Rock and Its Test Application.
    Yin Y; Liu G; Zhao T; Ma Q; Wang L; Zhang Y
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse problem in anisotropic poroelasticity: drained constants from undrained ultrasound measurements.
    Berryman JG; Nakagawa S
    J Acoust Soc Am; 2010 Feb; 127(2):720-9. PubMed ID: 20136194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating skeletal muscle electromechanical delay with intramuscular pressure.
    Go SA; Litchy WJ; Evertz LQ; Kaufman KR
    J Biomech; 2018 Jul; 76():181-188. PubMed ID: 29908653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson's ratios.
    Reese SP; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1394-400. PubMed ID: 20181336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transversely isotropic tensile material properties of skeletal muscle tissue.
    Morrow DA; Haut Donahue TL; Odegard GM; Kaufman KR
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):124-9. PubMed ID: 19878911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of high tensile Poisson's ratios of articular cartilage with a finite element fibril-reinforced hyperelastic model.
    García JJ
    Med Eng Phys; 2008 Jun; 30(5):590-8. PubMed ID: 17690001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation of Poisson's ratio as a damage parameter for bone fatigue.
    Pidaparti RM; Vogt A
    J Biomed Mater Res; 2002 Feb; 59(2):282-7. PubMed ID: 11745564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The feasibility of using elastography for imaging the Poisson's ratio in porous media.
    Righetti R; Ophir J; Srinivasan S; Krouskop TA
    Ultrasound Med Biol; 2004 Feb; 30(2):215-28. PubMed ID: 14998674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.