These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25541749)

  • 1. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.
    Scholz C; Knorr S; Hamacher K; Schmidt B
    J Chem Inf Model; 2015 Feb; 55(2):398-406. PubMed ID: 25541749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Evaluation of Covalent Docking Tools.
    Scarpino A; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2018 Jul; 58(7):1441-1458. PubMed ID: 29890081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Mode Prediction and Virtual Screening Applications by Covalent Docking.
    Scarpino A; Ferenczy GG; Keserű GM
    Methods Mol Biol; 2021; 2266():73-88. PubMed ID: 33759121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring.
    Zhu K; Borrelli KW; Greenwood JR; Day T; Abel R; Farid RS; Harder E
    J Chem Inf Model; 2014 Jul; 54(7):1932-40. PubMed ID: 24916536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated molecular mechanics based induced fit protein-ligand docking method.
    Koska J; Spassov VZ; Maynard AJ; Yan L; Austin N; Flook PK; Venkatachalam CM
    J Chem Inf Model; 2008 Oct; 48(10):1965-73. PubMed ID: 18816046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular docking to flexible targets.
    Sørensen J; Demir Ö; Swift RV; Feher VA; Amaro RE
    Methods Mol Biol; 2015; 1215():445-69. PubMed ID: 25330975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of protein-ligand docking with simulated chemical shift perturbations.
    Ten Brink T; Aguirre C; Exner TE; Krimm I
    J Chem Inf Model; 2015 Feb; 55(2):275-83. PubMed ID: 25357133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints.
    Ouyang X; Zhou S; Su CT; Ge Z; Li R; Kwoh CK
    J Comput Chem; 2013 Feb; 34(4):326-36. PubMed ID: 23034731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor α.
    Perricone U; Wieder M; Seidel T; Langer T; Padova A; Almerico AM; Tutone M
    ChemMedChem; 2017 Aug; 12(16):1399-1407. PubMed ID: 28135036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved pose and affinity predictions using different protocols tailored on the basis of data availability.
    Prathipati P; Nagao C; Ahmad S; Mizuguchi K
    J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations.
    Guterres H; Im W
    J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.