These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25541916)

  • 1. Perimetry in young and neurologically impaired children: the Behavioral Visual Field (BEFIE) Screening Test revisited.
    Koenraads Y; Braun KP; van der Linden DC; Imhof SM; Porro GL
    JAMA Ophthalmol; 2015 Mar; 133(3):319-25. PubMed ID: 25541916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y; Yilmaz A; Yucel I
    Ophthalmologica; 2008; 222(5):329-33. PubMed ID: 18617757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual field screening with a laptop computer system.
    Bruun-Jensen J
    Optometry; 2011 Sep; 82(9):519-27. PubMed ID: 21871394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reliability of frequency-doubling perimetry in young children.
    Blumenthal EZ; Haddad A; Horani A; Anteby I
    Ophthalmology; 2004 Mar; 111(3):435-9. PubMed ID: 15019315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ability of healthy volunteers to simulate a neurologic field defect on automated perimetry.
    Ghate D; Bodnarchuk B; Sanders S; Deokule S; Kedar S
    Ophthalmology; 2014 Mar; 121(3):759-62. PubMed ID: 24314835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel rarebits: a novel, large-scale visual field screening method.
    Lin SR; Fijalkowski N; Lin BR; Li F; Singh K; Chang RT
    Clin Exp Optom; 2014 Nov; 97(6):528-33. PubMed ID: 25331077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Component perimetry: a fast method to detect visual field defects caused by brain lesions.
    Bachmann G; Fahle M
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2870-86. PubMed ID: 10967040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study.
    Iwase A; Tomidokoro A; Araie M; Shirato S; Shimizu H; Kitazawa Y;
    Ophthalmology; 2007 Jan; 114(1):27-32. PubMed ID: 17070580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reliability of frequency-doubling technology (FDT) perimetry in a pediatric population.
    Becker K; Semes L
    Optometry; 2003 Mar; 74(3):173-9. PubMed ID: 12645850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS;
    JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual field defects in children with congenital glaucoma.
    de Souza EC; Berezovsky A; Morales PH; de Arruda Mello PA; de Oliveira Bonomo PP; Salomão SR
    J Pediatr Ophthalmol Strabismus; 2000; 37(5):266-72. PubMed ID: 11020107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peristat: a computer-based perimetry self-test for cost-effective population screening of glaucoma.
    Ianchulev T; Pham P; Makarov V; Francis B; Minckler D
    Curr Eye Res; 2005 Jan; 30(1):1-6. PubMed ID: 15875358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of visual field reliability indices in ruling out glaucoma.
    Rao HL; Yadav RK; Begum VU; Addepalli UK; Choudhari NS; Senthil S; Garudadri CS
    JAMA Ophthalmol; 2015 Jan; 133(1):40-4. PubMed ID: 25256758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccadic vector optokinetic perimetry in children with neurodisability or isolated visual pathway lesions: observational cohort study.
    Tailor V; Glaze S; Unwin H; Bowman R; Thompson G; Dahlmann-Noor A
    Br J Ophthalmol; 2016 Oct; 100(10):1427-32. PubMed ID: 26740608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency doubling technology perimetry in normal children.
    Quinn LM; Gardiner SK; Wheeler DT; Newkirk M; Johnson CA
    Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential hyperacuity perimeter in best vitelliform macular dystrophy.
    Querques G; Atmani K; Bouzitou-Mfoumou R; Leveziel N; Massamba N; Souied EH
    Retina; 2011 May; 31(5):959-66. PubMed ID: 21242858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensives, and glaucoma patients.
    Horn FK; Wakili N; Jünemann AM; Korth M
    Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):658-65. PubMed ID: 12192460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning effect and repeatability of automated kinetic perimetry in healthy participants.
    Hirasawa K; Shoji N
    Curr Eye Res; 2014 Sep; 39(9):928-37. PubMed ID: 24588228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.