These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 25541980)
1. Cyanea capillata bell kinematics analysis through corrected in situ imaging and modeling using strategic discretization techniques. Villanueva AA; Priya S PLoS One; 2014; 9(12):e115220. PubMed ID: 25541980 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro). Villanueva AA; Marut KJ; Michael T; Priya S Bioinspir Biomim; 2013 Dec; 8(4):046005. PubMed ID: 24166747 [TBL] [Abstract][Full Text] [Related]
3. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. Herschlag G; Miller L J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208 [TBL] [Abstract][Full Text] [Related]
4. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish Neil TR; Askew GN J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic and live medusae reveal the mechanistic advantages of a flexible bell margin. Colin SP; Costello JH; Dabiri JO; Villanueva A; Blottman JB; Gemmell BJ; Priya S PLoS One; 2012; 7(11):e48909. PubMed ID: 23145016 [TBL] [Abstract][Full Text] [Related]
6. Control of vortex rings for manoeuvrability. Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226 [TBL] [Abstract][Full Text] [Related]
7. A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea xamachana. Hamlet C; Santhanakrishnan A; Miller LA J Exp Biol; 2011 Jun; 214(Pt 11):1911-21. PubMed ID: 21562179 [TBL] [Abstract][Full Text] [Related]
8. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita). McHenry MJ; Jed J J Exp Biol; 2003 Nov; 206(Pt 22):4125-37. PubMed ID: 14555752 [TBL] [Abstract][Full Text] [Related]
9. Density and sound speed of two gelatinous zooplankton: ctenophore (Mnemiopsis leidyi) and lion's mane jellyfish (Cyanea capillata). Warren JD; Smith JN J Acoust Soc Am; 2007 Jul; 122(1):574-80. PubMed ID: 17614513 [TBL] [Abstract][Full Text] [Related]
10. A numerical study of the benefits of driving jellyfish bells at their natural frequency. Hoover A; Miller L J Theor Biol; 2015 Jun; 374():13-25. PubMed ID: 25823642 [TBL] [Abstract][Full Text] [Related]
11. Turning kinematics of the scyphomedusa Costello JH; Colin SP; Gemmell BJ; Dabiri JO; Kanso EA Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211351 [TBL] [Abstract][Full Text] [Related]
12. Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. Santhanakrishnan A; Dollinger M; Hamlet CL; Colin SP; Miller LA J Exp Biol; 2012 Jul; 215(Pt 14):2369-81. PubMed ID: 22723475 [TBL] [Abstract][Full Text] [Related]
13. Transitions in morphology, nematocyst distribution, fluid motions, and prey capture during development of the scyphomedusa Cyanea capillata. Higgins JE; Ford MD; Costello JH Biol Bull; 2008 Feb; 214(1):29-41. PubMed ID: 18258773 [TBL] [Abstract][Full Text] [Related]
14. Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly. Villanueva A; Vlachos P; Priya S PLoS One; 2014; 9(6):e98310. PubMed ID: 24905025 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. Dabiri JO; Gharib M J Exp Biol; 2003 Oct; 206(Pt 20):3675-80. PubMed ID: 12966059 [TBL] [Abstract][Full Text] [Related]
16. Widespread utilization of passive energy recapture in swimming medusae. Gemmell BJ; Colin SP; Costello JH J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29180601 [TBL] [Abstract][Full Text] [Related]
17. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Villanueva A; Smith C; Priya S Bioinspir Biomim; 2011 Sep; 6(3):036004. PubMed ID: 21852714 [TBL] [Abstract][Full Text] [Related]
18. Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle. Miles JG; Battista NA J Math Biol; 2021 Nov; 83(5):56. PubMed ID: 34731319 [TBL] [Abstract][Full Text] [Related]
19. Neuromechanical wave resonance in jellyfish swimming. Hoover AP; Xu NW; Gemmell BJ; Colin SP; Costello JH; Dabiri JO; Miller LA Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836589 [TBL] [Abstract][Full Text] [Related]
20. Hopscotching jellyfish: combining different duty cycle kinematics can lead to enhanced swimming performance. Baldwin T; Battista NA Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]