These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 25542091)
1. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core-shell approach. Toma SH; Santos JJ; Araki K; Toma HE Anal Chim Acta; 2015 Jan; 855():70-5. PubMed ID: 25542091 [TBL] [Abstract][Full Text] [Related]
2. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776 [TBL] [Abstract][Full Text] [Related]
3. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Zengin A; Tamer U; Caykara T Anal Chim Acta; 2014 Mar; 817():33-41. PubMed ID: 24594815 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
6. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
8. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
9. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen. Panikkanvalappil SR; El-Sayed MA J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535 [TBL] [Abstract][Full Text] [Related]
11. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine. Selbes YS; Caglayan MG; Eryilmaz M; Boyaci IH; Saglam N; Basaran AA; Tamer U Anal Bioanal Chem; 2016 Nov; 408(29):8447-8456. PubMed ID: 27722945 [TBL] [Abstract][Full Text] [Related]
12. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection. Ma X; Xia Y; Ni L; Song L; Wang Z Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285 [TBL] [Abstract][Full Text] [Related]
13. A novel SERS nanoprobe based on theĀ use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Zhu T; Hu Y; Yang K; Dong N; Yu M; Jiang N Mikrochim Acta; 2017 Dec; 185(1):30. PubMed ID: 29594575 [TBL] [Abstract][Full Text] [Related]
14. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe Xiang Y; Yang H; Guo X; Wu Y; Ying Y; Wen Y; Yang H Mikrochim Acta; 2018 Feb; 185(3):195. PubMed ID: 29594694 [TBL] [Abstract][Full Text] [Related]
15. A simple and universal "turn-on" detection platform for proteases based on surface enhanced Raman scattering (SERS). Wu Z; Liu Y; Liu Y; Xiao H; Shen A; Zhou X; Hu J Biosens Bioelectron; 2015 Mar; 65():375-81. PubMed ID: 25461184 [TBL] [Abstract][Full Text] [Related]
16. Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto-metal nanoprobe assembling. Zhang L; Dong WF; Tang ZY; Song JF; Xia H; Sun HB Opt Lett; 2010 Oct; 35(19):3297-9. PubMed ID: 20890365 [TBL] [Abstract][Full Text] [Related]
17. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles. Lopez A; Lovato F; Oh SH; Lai YH; Filbrun S; Driskell EA; Driskell JD Talanta; 2016; 146():388-93. PubMed ID: 26695280 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140 [TBL] [Abstract][Full Text] [Related]
19. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Kadasala NR; Wei A Nanoscale; 2015 Jul; 7(25):10931-5. PubMed ID: 26060841 [TBL] [Abstract][Full Text] [Related]