These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25542115)

  • 1. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels.
    Wan C; Lu Y; Jiao Y; Jin C; Sun Q; Li J
    Carbohydr Polym; 2015 Mar; 118():115-8. PubMed ID: 25542115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.
    Wan C; Li J
    Carbohydr Polym; 2016 Oct; 150():172-9. PubMed ID: 27312627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight Multifunctional Carbon-Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose.
    Li C; Wu ZY; Liang HW; Chen JF; Yu SH
    Small; 2017 Jul; 13(25):. PubMed ID: 28508512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents.
    Jin C; Han S; Li J; Sun Q
    Carbohydr Polym; 2015 Jun; 123():150-6. PubMed ID: 25843846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.
    Han S; Sun Q; Zheng H; Li J; Jin C
    Carbohydr Polym; 2016 Jan; 136():95-100. PubMed ID: 26572333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels.
    Fu R; Baumann TF; Cronin S; Dresselhaus G; Dresselhaus MS; Satcher JH
    Langmuir; 2005 Mar; 21(7):2647-51. PubMed ID: 15779927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water.
    Yang Y; Tong Z; Ngai T; Wang C
    ACS Appl Mater Interfaces; 2014 May; 6(9):6351-60. PubMed ID: 24738840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation.
    Li L; Hu T; Sun H; Zhang J; Wang A
    ACS Appl Mater Interfaces; 2017 May; 9(21):18001-18007. PubMed ID: 28492311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles.
    Xiao S; Gao R; Lu Y; Li J; Sun Q
    Carbohydr Polym; 2015 Mar; 119():202-9. PubMed ID: 25563961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile preparation of monolithic κ-carrageenan aerogels.
    Ganesan K; Ratke L
    Soft Matter; 2014 May; 10(18):3218-24. PubMed ID: 24718695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Nanoparticle Hybrid Aerogels: 3D Double-Interconnected Network Porous Microstructure, Thermoelectric, and Solvent-Removal Functions.
    Tan D; Zhao J; Gao C; Wang H; Chen G; Shi D
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21820-21828. PubMed ID: 28573853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of highly crystalline graphene aerogels.
    Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A
    ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane.
    Zhai T; Zheng Q; Cai Z; Turng LS; Xia H; Gong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7436-44. PubMed ID: 25822398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilicity-controlled carbon aerogels with high mesoporosity.
    Tao Y; Endo M; Kaneko K
    J Am Chem Soc; 2009 Jan; 131(3):904-5. PubMed ID: 19119814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties.
    Huang H; Yu Y; Qing Y; Zhang X; Cui J; Wang H
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes.
    Yang X; Fei B; Ma J; Liu X; Yang S; Tian G; Jiang Z
    Carbohydr Polym; 2018 Jan; 180():385-392. PubMed ID: 29103519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood-Derived Ultrathin Carbon Nanofiber Aerogels.
    Li SC; Hu BC; Ding YW; Liang HW; Li C; Yu ZY; Wu ZY; Chen WS; Yu SH
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7085-7090. PubMed ID: 29687551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.