BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25542162)

  • 21. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation.
    Laursen WJ; Mastrotto M; Pesta D; Funk OH; Goodman JB; Merriman DK; Ingolia N; Shulman GI; Bagriantsev SN; Gracheva EO
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1607-12. PubMed ID: 25605929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.
    Vermillion KL; Anderson KJ; Hampton M; Andrews MT
    Physiol Genomics; 2015 Mar; 47(3):58-74. PubMed ID: 25572546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration.
    Peretti D; Bastide A; Radford H; Verity N; Molloy C; Martin MG; Moreno JA; Steinert JR; Smith T; Dinsdale D; Willis AE; Mallucci GR
    Nature; 2015 Feb; 518(7538):236-9. PubMed ID: 25607368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermogenic capacity at subzero temperatures: how low can a hibernator go?
    Richter MM; Williams CT; Lee TN; Tøien Ø; Florant GL; Barnes BM; Buck CL
    Physiol Biochem Zool; 2015; 88(1):81-9. PubMed ID: 25590595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease.
    Roberts AM; Ware JS; Herman DS; Schafer S; Baksi J; Bick AG; Buchan RJ; Walsh R; John S; Wilkinson S; Mazzarotto F; Felkin LE; Gong S; MacArthur JA; Cunningham F; Flannick J; Gabriel SB; Altshuler DM; Macdonald PS; Heinig M; Keogh AM; Hayward CS; Banner NR; Pennell DJ; O'Regan DP; San TR; de Marvao A; Dawes TJ; Gulati A; Birks EJ; Yacoub MH; Radke M; Gotthardt M; Wilson JG; O'Donnell CJ; Prasad SK; Barton PJ; Fatkin D; Hubner N; Seidman JG; Seidman CE; Cook SA
    Sci Transl Med; 2015 Jan; 7(270):270ra6. PubMed ID: 25589632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of hypometabolism: insights into epigenetic controls.
    Storey KB
    J Exp Biol; 2015 Jan; 218(Pt 1):150-9. PubMed ID: 25568462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes.
    Gilbert RE; Thai K; Advani SL; Cummins CL; Kepecs DM; Schroer SA; Woo M; Zhang Y
    Diabetologia; 2015 Apr; 58(4):819-27. PubMed ID: 25563725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscles in Winter: The Epigenetics of Metabolic Arrest.
    Ingelson-Filpula WA; Storey KB
    Epigenomes; 2021 Dec; 5(4):. PubMed ID: 34968252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myocardial stunning and hibernation revisited.
    Heusch G
    Nat Rev Cardiol; 2021 Jul; 18(7):522-536. PubMed ID: 33531698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A discrete neuronal circuit induces a hibernation-like state in rodents.
    Takahashi TM; Sunagawa GA; Soya S; Abe M; Sakurai K; Ishikawa K; Yanagisawa M; Hama H; Hasegawa E; Miyawaki A; Sakimura K; Takahashi M; Sakurai T
    Nature; 2020 Jul; 583(7814):109-114. PubMed ID: 32528181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurons that regulate mouse torpor.
    Hrvatin S; Sun S; Wilcox OF; Yao H; Lavin-Peter AJ; Cicconet M; Assad EG; Palmer ME; Aronson S; Banks AS; Griffith EC; Greenberg ME
    Nature; 2020 Jul; 583(7814):115-121. PubMed ID: 32528180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mechanism Enabling Hibernation in Mammals.
    Horii Y; Shiina T; Shimizu Y
    Adv Exp Med Biol; 2018; 1081():45-60. PubMed ID: 30288703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights from the Den: How Hibernating Bears May Help Us Understand and Treat Human Disease.
    Berg von Linde M; Arevström L; Fröbert O
    Clin Transl Sci; 2015 Oct; 8(5):601-5. PubMed ID: 26083277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hibernating brown bears are protected against atherogenic dyslipidemia.
    Giroud S; Chery I; Arrivé M; Prost M; Zumsteg J; Heintz D; Evans AL; Gauquelin-Koch G; Arnemo JM; Swenson JE; Lefai E; Bertile F; Simon C; Blanc S
    Sci Rep; 2021 Sep; 11(1):18723. PubMed ID: 34548543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms.
    Zhao Y; Seluanov A; Gorbunova V
    Annu Rev Genet; 2021 Nov; 55():135-159. PubMed ID: 34416119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An engineering perspective on the development and evolution of implantable cardiac monitors in free-living animals.
    Laske TG; Garshelis DL; Iles TL; Iaizzo PA
    Philos Trans R Soc Lond B Biol Sci; 2021 Aug; 376(1830):20200217. PubMed ID: 34121460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation.
    Bertile F; Habold C; Le Maho Y; Giroud S
    Front Physiol; 2021; 12():634953. PubMed ID: 33679446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Obesity as a Neuroendocrine Reprogramming.
    Ghanemi A; Yoshioka M; St-Amand J
    Medicina (Kaunas); 2021 Jan; 57(1):. PubMed ID: 33450943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiac adaptation and cardioprotection against arrhythmias and ischemia-reperfusion injury in mammalian hibernators.
    Xie LH; Gwathmey JK; Zhao Z
    Pflugers Arch; 2021 Mar; 473(3):407-416. PubMed ID: 33394082
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.