These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 25542399)
1. Visual feedback of the centre of gravity to optimize standing balance. Lakhani B; Mansfield A Gait Posture; 2015 Feb; 41(2):499-503. PubMed ID: 25542399 [TBL] [Abstract][Full Text] [Related]
2. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity. Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444 [TBL] [Abstract][Full Text] [Related]
3. Can augmented feedback facilitate learning a reactive balance task among older adults? Mansfield A; Aqui A; Fraser JE; Rajachandrakumar R; Lakhani B; Patterson KK Exp Brain Res; 2017 Jan; 235(1):293-304. PubMed ID: 27709269 [TBL] [Abstract][Full Text] [Related]
4. How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing. Vuillerme N; Pinsault N; Chenu O; Boisgontier M; Demongeot J; Payan Y Exp Brain Res; 2007 Aug; 181(4):547-54. PubMed ID: 17476487 [TBL] [Abstract][Full Text] [Related]
5. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle. Vuillerme N; Bertrand R; Pinsault N Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035 [TBL] [Abstract][Full Text] [Related]
6. The role of task constraints in relating laboratory and clinical measures of balance. Kuznetsov NA; Riley MA Gait Posture; 2015 Sep; 42(3):275-9. PubMed ID: 26112778 [TBL] [Abstract][Full Text] [Related]
7. Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing. Masani K; Vette AH; Kouzaki M; Kanehisa H; Fukunaga T; Popovic MR Neurosci Lett; 2007 Jul; 422(3):202-6. PubMed ID: 17611029 [TBL] [Abstract][Full Text] [Related]
8. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures. Kilby MC; Molenaar PC; Slobounov SM; Newell KM Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409 [TBL] [Abstract][Full Text] [Related]
9. Compatibility of postural behavior induced by two aspects of visual feedback: time delay and scale display. Rougier P Exp Brain Res; 2005 Aug; 165(2):193-202. PubMed ID: 15875170 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness of different visual biofeedback signals for human balance improvement. Halická Z; Lobotková J; Bučková K; Hlavačka F Gait Posture; 2014; 39(1):410-4. PubMed ID: 24001870 [TBL] [Abstract][Full Text] [Related]
11. To what extent can increasing the magnification of visual feedback of the centre of pressure position change the control of quiet standing balance? Cawsey RP; Chua R; Carpenter MG; Sanderson DJ Gait Posture; 2009 Feb; 29(2):280-4. PubMed ID: 18996011 [TBL] [Abstract][Full Text] [Related]
12. Does the type of visual feedback information change the control of standing balance? Dos Anjos F; Lemos T; Imbiriba LA Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210 [TBL] [Abstract][Full Text] [Related]
13. Sensorimotor adaptation of whole-body postural control. Shiller DM; Veilleux LN; Marois M; Ballaz L; Lemay M Neuroscience; 2017 Jul; 356():217-228. PubMed ID: 28549560 [TBL] [Abstract][Full Text] [Related]
14. Relative efficacy of various strategies for visual feedback in standing balance activities. Kennedy MW; Crowell CR; Striegel AD; Villano M; Schmiedeler JP Exp Brain Res; 2013 Sep; 230(1):117-25. PubMed ID: 23836111 [TBL] [Abstract][Full Text] [Related]
15. Optimising the visual feedback technique for improving upright stance maintenance by delaying its display: behavioural effects on healthy adults. Rougier P Gait Posture; 2004 Apr; 19(2):154-63. PubMed ID: 15013504 [TBL] [Abstract][Full Text] [Related]
16. Inter-individual variability in sensory weighting of a plantar pressure-based, tongue-placed tactile biofeedback for controlling posture. Vuillerme N; Chenu O; Pinsault N; Boisgontier M; Demongeot J; Payan Y Neurosci Lett; 2007 Jun; 421(2):173-7. PubMed ID: 17566646 [TBL] [Abstract][Full Text] [Related]
17. Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults. Lubetzky AV; Price R; Ciol MA; Kelly VE; McCoy SW Somatosens Mot Res; 2015; 32(4):211-8. PubMed ID: 26370065 [TBL] [Abstract][Full Text] [Related]
18. Beyond deficit or compensation: new insights on postural control after long-term total visual loss. Russo MM; Lemos T; Imbiriba LA; Ribeiro NL; Vargas CD Exp Brain Res; 2017 Feb; 235(2):437-446. PubMed ID: 27770165 [TBL] [Abstract][Full Text] [Related]
19. A Correlation-Based Framework for Evaluating Postural Control Stochastic Dynamics. Hernandez ME; Snider J; Stevenson C; Cauwenberghs G; Poizner H IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):551-561. PubMed ID: 26011886 [TBL] [Abstract][Full Text] [Related]
20. Joint coordination in young and older adults during quiet stance: effect of visual feedback of the center of pressure. Freitas SM; Duarte M Gait Posture; 2012 Jan; 35(1):83-7. PubMed ID: 21962847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]