These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 25542416)

  • 21. Is it possible to individualize intensity of eccentric cycling exercise from perceived exertion on concentric test?
    Laroche D; Joussain C; Espagnac C; Morisset C; Tordi N; Gremeaux V; Casillas JM
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1621-1627.e1. PubMed ID: 23270934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of muscle pump in the development of cardiovascular drift.
    Kounalakis SN; Keramidas ME; Nassis GP; Geladas ND
    Eur J Appl Physiol; 2008 May; 103(1):99-107. PubMed ID: 18176813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of upper extremity peak oxygen consumption from heart rate during submaximal arm cycling in young and middle-aged adults.
    Helgerud J; Øiestad BE; Wang E; Hoff J
    Eur J Appl Physiol; 2019 Dec; 119(11-12):2589-2598. PubMed ID: 31586223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle damage slows oxygen uptake kinetics during moderate-intensity exercise performed at high pedal rate.
    Molina R; Denadai BS
    Appl Physiol Nutr Metab; 2011 Dec; 36(6):848-55. PubMed ID: 22050134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of oxygen cost of internal power during cycling exercise with changing pedal rate.
    Tokui M; Hirakoba K
    J Physiol Anthropol; 2008 May; 27(3):133-8. PubMed ID: 18536513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pedaling rate on submaximal exercise responses of competitive cyclists.
    Hagberg JM; Mullin JP; Giese MD; Spitznagel E
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Aug; 51(2):447-51. PubMed ID: 7263451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling.
    Broatch JR; Bishop DJ; Halson S
    Int J Sports Physiol Perform; 2018 Aug; 13(7):882-890. PubMed ID: 29252067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The muscle force component in pedaling retains constant direction across pedaling rates.
    Loras H; Ettema G; Leirdal S
    J Appl Biomech; 2009 Feb; 25(1):85-92. PubMed ID: 19299833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle recruitment patterns regulate physiological responses during exercise of the same intensity.
    Deschenes MR; Kraemer WJ; McCoy RW; Volek JS; Turner BM; Weinlein JC
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2229-36. PubMed ID: 11080090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of cadence on cycling efficiency and local tissue oxygenation.
    D Jacobs R; E Berg K; Slivka DR; Noble JM
    J Strength Cond Res; 2013 Mar; 27(3):637-42. PubMed ID: 22648142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists.
    Takaishi T; Yasuda Y; Ono T; Moritani T
    Med Sci Sports Exerc; 1996 Dec; 28(12):1492-7. PubMed ID: 8970143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling.
    Farina D; Macaluso A; Ferguson RA; De Vito G
    J Appl Physiol (1985); 2004 Dec; 97(6):2035-41. PubMed ID: 15286050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strength training reduces freely chosen pedal rate during submaximal cycling.
    Hansen EA; Raastad T; Hallén J
    Eur J Appl Physiol; 2007 Nov; 101(4):419-26. PubMed ID: 17638007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological responses to treadmill and cycle exercise.
    Abrantes C; Sampaio J; Reis V; Sousa N; Duarte J
    Int J Sports Med; 2012 Jan; 33(1):26-30. PubMed ID: 22052028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No effect of cycling experience on leg cycle ergometer efficiency.
    Nickleberry BL; Brooks GA
    Med Sci Sports Exerc; 1996 Nov; 28(11):1396-401. PubMed ID: 8933490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate.
    Beneke R; Alkhatib A
    Biol Sport; 2015 Mar; 32(1):27-33. PubMed ID: 25729147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training induced decrease in oxygen cost of cycling is accompanied by down-regulation of SERCA expression in human vastus lateralis muscle.
    Majerczak J; Karasinski J; Zoladz JA
    J Physiol Pharmacol; 2008 Sep; 59(3):589-602. PubMed ID: 18953100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.