These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25542612)

  • 21. Development of finite element model for customized prostheses design for patient with pelvic bone tumor.
    Iqbal T; Shi L; Wang L; Liu Y; Li D; Qin M; Jin Z
    Proc Inst Mech Eng H; 2017 Jun; 231(6):525-533. PubMed ID: 28639517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission.
    Hu P; Wu T; Wang HZ; Qi XZ; Yao J; Cheng XD; Chen W; Zhang YZ
    Orthop Surg; 2017 Feb; 9(1):115-122. PubMed ID: 28300359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element analysis of femoral neck stress in relation to pelvic width.
    Schwarzkopf R; Dong NN; Fetto JF
    Bull NYU Hosp Jt Dis; 2011; 69(4):292-7. PubMed ID: 22196384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone.
    Shim VB; Battley M; Anderson IA; Munro JT
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1495-9. PubMed ID: 24870395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.
    Gras LL; Mitton D; Crevier-Denoix N; Laporte S
    Comput Methods Biomech Biomed Engin; 2012; 15(1):13-21. PubMed ID: 21607890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of screw fixation type on a modular hemi-pelvic prosthesis: a 3-D finite element model.
    Hao Z; Wan C; Gao X; Ji T; Wang H
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):125-8. PubMed ID: 23244444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of type II+III pelvic resection with a modular hemipelvic endoprosthesis: a finite element analysis study.
    Ji T; Guo W; Tang XD; Yang Y
    Orthop Surg; 2010 Nov; 2(4):272-7. PubMed ID: 22009962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring morphological parameters of the pelvic floor for finite element modelling purposes.
    Janda S; van der Helm FC; de Blok SB
    J Biomech; 2003 Jun; 36(6):749-57. PubMed ID: 12742442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical analysis of the human pelvis and its application to the artificial hip joint--by means of the three dimensional finite element method.
    Oonishi H; Isha H; Hasegawa T
    J Biomech; 1983; 16(6):427-44. PubMed ID: 6619159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the structural behavior of the pelvis during lateral impact using the finite element method.
    Dawson JM; Khmelniker BV; McAndrew MP
    Accid Anal Prev; 1999; 31(1-2):109-19. PubMed ID: 10084625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biomechanical study of periacetabular defects and cement filling.
    Li Z; Butala NB; Etheridge BS; Siegel HJ; Lemons JE; Eberhardt AW
    J Biomech Eng; 2007 Apr; 129(2):129-36. PubMed ID: 17408317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements.
    Lu Y; Rosenau E; Paetzold H; Klein A; PĆ¼schel K; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1265-74. PubMed ID: 23990044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.