These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25542675)

  • 21. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sound level context modulates neural activity in the human brainstem.
    Herrmann B; Yasmin S; Araz K; Purcell DW; Johnsrude IS
    Sci Rep; 2021 Nov; 11(1):22581. PubMed ID: 34799632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children.
    Mehrkian S; Moossavi A; Gohari N; Nazari MA; Bakhshi E; Alain C
    Neurosci Res; 2022 May; 178():52-59. PubMed ID: 35007647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Representation of concurrent acoustic objects in primary auditory cortex.
    Dyson BJ; Alain C
    J Acoust Soc Am; 2004 Jan; 115(1):280-8. PubMed ID: 14759021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related differences in neuromagnetic brain activity underlying concurrent sound perception.
    Alain C; McDonald KL
    J Neurosci; 2007 Feb; 27(6):1308-14. PubMed ID: 17287505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concurrent sound segregation based on inharmonicity and onset asynchrony.
    Lipp R; Kitterick P; Summerfield Q; Bailey PJ; Paul-Jordanov I
    Neuropsychologia; 2010 Apr; 48(5):1417-25. PubMed ID: 20079754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Between sound and perception: reviewing the search for a neural code.
    Eggermont JJ
    Hear Res; 2001 Jul; 157(1-2):1-42. PubMed ID: 11470183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concurrent sound segregation impairments in schizophrenia: The contribution of auditory-specific and general cognitive factors.
    Ramage EM; Klimas N; Vogel SJ; Vertinski M; Yerkes BD; Flores A; Sutton GP; Ringdahl EN; Allen DN; Snyder JS
    Schizophr Res; 2016 Jan; 170(1):95-101. PubMed ID: 26644302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of attention on neuroelectric correlates of auditory stream segregation.
    Snyder JS; Alain C; Picton TW
    J Cogn Neurosci; 2006 Jan; 18(1):1-13. PubMed ID: 16417678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech.
    Bidelman GM
    Neuroimage; 2018 Jul; 175():56-69. PubMed ID: 29604459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory evoked responses in human auditory cortex to the variation of sound intensity in an ongoing tone.
    Soeta Y; Nakagawa S
    Hear Res; 2012 May; 287(1-2):67-75. PubMed ID: 22726618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of perceptual switching while listening to bistable auditory streaming stimuli.
    Higgins NC; Little DF; Yerkes BD; Nave KM; Kuruvilla-Mathew A; Elhilali M; Snyder JS
    Neuroimage; 2020 Jan; 204():116220. PubMed ID: 31546046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related differences in auditory evoked responses during rapid perceptual learning.
    Alain C; Snyder JS
    Clin Neurophysiol; 2008 Feb; 119(2):356-66. PubMed ID: 18083619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological correlates of cocktail-party listening.
    Lewald J; Getzmann S
    Behav Brain Res; 2015 Oct; 292():157-66. PubMed ID: 26092714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex.
    Saderi D; Buran BN; David SV
    J Neurosci; 2020 May; 40(19):3783-3798. PubMed ID: 32273487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.
    Krishnan A; Suresh CH; Gandour JT
    Neuroscience; 2017 Mar; 346():52-63. PubMed ID: 28108254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced brainstem and cortical encoding of sound during synchronized movement.
    Nozaradan S; Schönwiesner M; Caron-Desrochers L; Lehmann A
    Neuroimage; 2016 Nov; 142():231-240. PubMed ID: 27397623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.