BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25542781)

  • 1. The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis.
    Ben-Dov N; Korenstein R
    Biochim Biophys Acta; 2015 Mar; 1848(3):869-77. PubMed ID: 25542781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat.
    Al Soraj M; He L; Peynshaert K; Cousaert J; Vercauteren D; Braeckmans K; De Smedt SC; Jones AT
    J Control Release; 2012 Jul; 161(1):132-41. PubMed ID: 22465675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.
    Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A
    J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide.
    Zhang X; Jin Y; Plummer MR; Pooyan S; Gunaseelan S; Sinko PJ
    Mol Pharm; 2009; 6(3):836-48. PubMed ID: 19278221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internalization routes of cell-penetrating melanoma antigen peptides into human dendritic cells.
    Buhl T; Braun A; Forkel S; Möbius W; van Werven L; Jahn O; Rezaei-Ghaleh N; Zweckstetter M; Mempel M; Schön MP; Haenssle HA
    Exp Dermatol; 2014 Jan; 23(1):20-6. PubMed ID: 24372650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides.
    Duchardt F; Fotin-Mleczek M; Schwarz H; Fischer R; Brock R
    Traffic; 2007 Jul; 8(7):848-66. PubMed ID: 17587406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells.
    Niu X; Gao Z; Qi S; Su L; Yang N; Luan X; Li J; Zhang Q; An Y; Zhang S
    Int J Nanomedicine; 2018; 13():4895-4911. PubMed ID: 30214196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes.
    Li GH; Li W; Mumper RJ; Nath A
    FASEB J; 2012 Jul; 26(7):2824-34. PubMed ID: 22447980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions.
    Mishra A; Lai GH; Schmidt NW; Sun VZ; Rodriguez AR; Tong R; Tang L; Cheng J; Deming TJ; Kamei DT; Wong GC
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16883-8. PubMed ID: 21969533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions.
    Vives E
    J Mol Recognit; 2003; 16(5):265-71. PubMed ID: 14523939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide.
    Zou L; Peng Q; Wang P; Zhou B
    J Membr Biol; 2017 Apr; 250(2):115-122. PubMed ID: 27933338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAT peptide internalization: seeking the mechanism of entry.
    Vivès E; Richard JP; Rispal C; Lebleu B
    Curr Protein Pept Sci; 2003 Apr; 4(2):125-32. PubMed ID: 12678851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAT-peptide modified liposomes: preparation, characterization, and cellular interaction.
    Fretz MM; Storm G
    Methods Mol Biol; 2010; 605():349-59. PubMed ID: 20072893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis.
    Wadia JS; Stan RV; Dowdy SF
    Nat Med; 2004 Mar; 10(3):310-5. PubMed ID: 14770178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics.
    Lin J; Alexander-Katz A
    ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.