BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25542794)

  • 1. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy.
    Zhang H; Wu H; Wang J; Yang Y; Wu D; Zhang Y; Zhang Y; Zhou Z; Yang S
    Biomaterials; 2015 Feb; 42():66-77. PubMed ID: 25542794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy.
    Bai J; Liu Y; Jiang X
    Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy.
    Shi X; Gong H; Li Y; Wang C; Cheng L; Liu Z
    Biomaterials; 2013 Jul; 34(20):4786-93. PubMed ID: 23557860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanorod-assembled PEGylated graphene-oxide nanocomposites for photothermal cancer therapy.
    Dembereldorj U; Choi SY; Ganbold EO; Song NW; Kim D; Choo J; Lee SY; Kim S; Joo SW
    Photochem Photobiol; 2014; 90(3):659-66. PubMed ID: 24303894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer.
    Yang G; Gong H; Liu T; Sun X; Cheng L; Liu Z
    Biomaterials; 2015 Aug; 60():62-71. PubMed ID: 25985153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Europium-phenolic network coated BaGdF
    Zhu W; Liang S; Wang J; Yang Z; Zhang L; Yuan T; Xu Z; Xu H; Li P
    J Mater Sci Mater Med; 2017 May; 28(5):74. PubMed ID: 28361281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging.
    Shi J; Wang L; Zhang J; Ma R; Gao J; Liu Y; Zhang C; Zhang Z
    Biomaterials; 2014 Jul; 35(22):5847-61. PubMed ID: 24746963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers.
    Zhang L; Zeng L; Pan Y; Luo S; Ren W; Gong A; Ma X; Liang H; Lu G; Wu A
    Biomaterials; 2015 Mar; 44():82-90. PubMed ID: 25617128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study.
    Feng W; Zhou X; Nie W; Chen L; Qiu K; Zhang Y; He C
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4354-67. PubMed ID: 25664659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles.
    Yang K; Hu L; Ma X; Ye S; Cheng L; Shi X; Li C; Li Y; Liu Z
    Adv Mater; 2012 Apr; 24(14):1868-72. PubMed ID: 22378564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors.
    Li J; Hu Y; Yang J; Wei P; Sun W; Shen M; Zhang G; Shi X
    Biomaterials; 2015 Jan; 38():10-21. PubMed ID: 25457979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation.
    Rahimi-Moghaddam F; Azarpira N; Sattarahmady N
    Lasers Med Sci; 2018 Nov; 33(8):1769-1779. PubMed ID: 29790012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy.
    Liu T; Shi S; Liang C; Shen S; Cheng L; Wang C; Song X; Goel S; Barnhart TE; Cai W; Liu Z
    ACS Nano; 2015 Jan; 9(1):950-60. PubMed ID: 25562533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles.
    Kim SH; Lee JE; Sharker SM; Jeong JH; In I; Park SY
    Biomacromolecules; 2015 Nov; 16(11):3519-29. PubMed ID: 26451914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo.
    Wu M; Wang Q; Zhang D; Liao N; Wu L; Huang A; Liu X
    Colloids Surf B Biointerfaces; 2016 May; 141():467-475. PubMed ID: 26896652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated reduced-graphene oxide hybridized with Fe
    Wang L; Wang M; Zhou B; Zhou F; Murray C; Towner RA; Smith N; Saunders D; Xie G; Chen WR
    J Mater Chem B; 2019 Dec; 7(46):7406-7414. PubMed ID: 31710067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy.
    Liu F; He X; Lei Z; Liu L; Zhang J; You H; Zhang H; Wang Z
    Adv Healthc Mater; 2015 Mar; 4(4):559-68. PubMed ID: 25471617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.
    Meng J; Chen X; Tian Y; Li Z; Zheng Q
    Chemistry; 2017 Dec; 23(69):17521-17530. PubMed ID: 29047182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene nanomesh promises extremely efficient in vivo photothermal therapy.
    Akhavan O; Ghaderi E
    Small; 2013 Nov; 9(21):3593-601. PubMed ID: 23625739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.