These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25542986)

  • 1. Effect of monoacyl phosphatidylcholine content on the formation of microemulsions and the dermal delivery of flufenamic acid.
    Hoppel M; Juric S; Ettl H; Valenta C
    Int J Pharm; 2015 Feb; 479(1):70-6. PubMed ID: 25542986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid.
    Hoppel M; Ettl H; Holper E; Valenta C
    Int J Pharm; 2014 Nov; 475(1-2):156-62. PubMed ID: 25178824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of microemulsion microstructure and its impact on skin delivery of flufenamic acid.
    Mahrhauser DS; Kählig H; Partyka-Jankowska E; Peterlik H; Binder L; Kwizda K; Valenta C
    Int J Pharm; 2015 Jul; 490(1-2):292-7. PubMed ID: 26022888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural microemulsions: formulation design and skin interaction.
    Schwarz JC; Klang V; Hoppel M; Mahrhauser D; Valenta C
    Eur J Pharm Biopharm; 2012 Aug; 81(3):557-62. PubMed ID: 22561183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen.
    Ngawhirunpat T; Worachun N; Opanasopit P; Rojanarata T; Panomsuk S
    Pharm Dev Technol; 2013; 18(4):798-803. PubMed ID: 22023398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of component of microemulsions on transdermal delivery of buspirone hydrochloride.
    Tsai YH; Chang JT; Chang JS; Huang CT; Huang YB; Wu PC
    J Pharm Sci; 2011 Jun; 100(6):2358-65. PubMed ID: 21246563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration.
    Wolf M; Klang V; Stojcic T; Fuchs C; Wolzt M; Valenta C
    Int J Pharm; 2018 Oct; 549(1-2):343-351. PubMed ID: 30099212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of microemulsion formulations of nicotinic acid and its prodrugs for transdermal delivery.
    Tashtoush BM; Bennamani AN; Al-Taani BM
    Pharm Dev Technol; 2013; 18(4):834-43. PubMed ID: 23030413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linker-based lecithin microemulsions for transdermal delivery of lidocaine.
    Yuan JS; Ansari M; Samaan M; Acosta EJ
    Int J Pharm; 2008 Feb; 349(1-2):130-43. PubMed ID: 17904775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microemulsion Formulations for the Transdermal Delivery of Lapachol.
    Tabosa MAM; de Andrade ARB; Lira AAM; Sarmento VHV; de Santana DP; Leal LB
    AAPS PharmSciTech; 2018 May; 19(4):1837-1846. PubMed ID: 29637497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The advantage of polymer addition to a non-ionic oil in water microemulsion for the dermal delivery of progesterone.
    Biruss B; Valenta C
    Int J Pharm; 2008 Feb; 349(1-2):269-73. PubMed ID: 17869457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin.
    Telò I; Favero ED; Cantù L; Frattini N; Pescina S; Padula C; Santi P; Sonvico F; Nicoli S
    Mol Pharm; 2017 Oct; 14(10):3281-3289. PubMed ID: 28825487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin.
    Chen L; Tan F; Wang J; Liu F
    Pharmazie; 2012 Apr; 67(4):319-23. PubMed ID: 22570938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surfactant concentration on transdermal lidocaine delivery with linker microemulsions.
    Yuan JS; Yip A; Nguyen N; Chu J; Wen XY; Acosta EJ
    Int J Pharm; 2010 Jun; 392(1-2):274-84. PubMed ID: 20363304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsions as transdermal drug delivery vehicles.
    Kogan A; Garti N
    Adv Colloid Interface Sci; 2006 Nov; 123-126():369-85. PubMed ID: 16843424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidyl choline-based colloidal systems for dermal and transdermal drug delivery.
    Ferderber K; Hook S; Rades T
    J Liposome Res; 2009; 19(4):267-77. PubMed ID: 19863162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocarriers for dermal drug delivery: influence of preparation method, carrier type and rheological properties.
    Schwarz JC; Weixelbaum A; Pagitsch E; Löw M; Resch GP; Valenta C
    Int J Pharm; 2012 Nov; 437(1-2):83-8. PubMed ID: 22903049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants.
    Liu CH; Chang FY; Hung DK
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):63-70. PubMed ID: 20828994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations.
    Ustündağ Okur N; Apaydın S; Karabay Yavaşoğlu NÜ; Yavaşoğlu A; Karasulu HY
    Int J Pharm; 2011 Sep; 416(1):136-44. PubMed ID: 21723930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.