These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25543254)

  • 21. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC; Lin YJ; Horng JC
    Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2.
    Sami F; Smet-Nocca C; Khan M; Landrieu I; Lippens G; Brautigan DL
    Biochemistry; 2011 Aug; 50(30):6567-78. PubMed ID: 21714498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folding mechanisms of individual beta-hairpins in a Go model of Pin1 WW domain by all-atom molecular dynamics simulations.
    Luo Z; Ding J; Zhou Y
    J Chem Phys; 2008 Jun; 128(22):225103. PubMed ID: 18554060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein.
    Smet C; Wieruszeski JM; Buée L; Landrieu I; Lippens G
    FEBS Lett; 2005 Aug; 579(19):4159-64. PubMed ID: 16024016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Dynamic Basis for Signal Propagation in Human Pin1-WW.
    Olsson S; Strotz D; Vögeli B; Riek R; Cavalli A
    Structure; 2016 Sep; 24(9):1464-75. PubMed ID: 27499442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1.
    Namanja AT; Peng T; Zintsmaster JS; Elson AC; Shakour MG; Peng JW
    Structure; 2007 Mar; 15(3):313-27. PubMed ID: 17355867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein.
    Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P
    J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamically Driven Protein Allostery Exhibits Disparate Responses for Fast and Slow Motions.
    Guo J; Zhou HX
    Biophys J; 2015 Jun; 108(12):2771-4. PubMed ID: 26083915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation.
    Schelhorn C; Martín-Malpartida P; Suñol D; Macias MJ
    Sci Rep; 2015 Oct; 5():14990. PubMed ID: 26456073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
    Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G
    J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics of phosphopeptide binding to the human peptidyl prolyl cis/trans isomerase Pin1.
    Daum S; Fanghänel J; Wildemann D; Schiene-Fischer C
    Biochemistry; 2006 Oct; 45(39):12125-35. PubMed ID: 17002312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for phosphoserine-proline recognition by group IV WW domains.
    Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP
    Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allosteric Breakage of the Hydrogen Bond within the Dual-Histidine Motif in the Active Site of Human Pin1 PPIase.
    Wang J; Tochio N; Kawasaki R; Tamari Y; Xu N; Uewaki J; Utsunomiya-Tate N; Tate S
    Biochemistry; 2015 Aug; 54(33):5242-53. PubMed ID: 26226559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cross-strand Trp Trp pair stabilizes the hPin1 WW domain at the expense of function.
    Jäger M; Dendle M; Fuller AA; Kelly JW
    Protein Sci; 2007 Oct; 16(10):2306-13. PubMed ID: 17766376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role.
    Bailey ML; Shilton BH; Brandl CJ; Litchfield DW
    Biochemistry; 2008 Nov; 47(44):11481-9. PubMed ID: 18844375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cysteine-mediated dynamic hydrogen-bonding network in the active site of Pin1.
    Barman A; Hamelberg D
    Biochemistry; 2014 Jun; 53(23):3839-50. PubMed ID: 24840168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.