BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25543541)

  • 1. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.
    Fournel S; Marcos B; Godbout S; Heitz M
    Bioresour Technol; 2015 Mar; 179():165-172. PubMed ID: 25543541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses.
    Brassard P; Palacios JH; Godbout S; Bussières D; Lagacé R; Larouche JP; Pelletier F
    Bioresour Technol; 2014 Mar; 155():300-6. PubMed ID: 24462881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.
    Amaral SS; de Carvalho JA; Costa MA; Soares Neto TG; Dellani R; Leite LH
    Bioresour Technol; 2014 Jul; 164():55-63. PubMed ID: 24836706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.
    Vakalis S; Caligiuri C; Moustakas K; Malamis D; Renzi M; Baratieri M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35866-35873. PubMed ID: 29532382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler.
    Chang CC; Chen YH; Chang WR; Wu CH; Chen YH; Chang CY; Yuan MH; Shie JL; Li YS; Chiang SW; Yang TY; Lin FC; Ko CH; Liu BL; Liu KW; Wang SG
    J Air Waste Manag Assoc; 2019 Dec; 69(12):1467-1478. PubMed ID: 31524083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber.
    Chantara S; Thepnuan D; Wiriya W; Prawan S; Tsai YI
    Chemosphere; 2019 Jun; 224():407-416. PubMed ID: 30831491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of pollutant emissions from crop residue burning in the Punjab and Sindh provinces of Pakistan: uncertainties and challenges.
    Irfan M; Riaz M; Arif MS; Shahzad SM; Hussain S; Akhtar MJ; van den Berg L; Abbas F
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16475-91. PubMed ID: 26396020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads.
    Zhang X; Li K; Zhang C; Wang A
    Waste Manag; 2020 Mar; 105():84-91. PubMed ID: 32035330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion modelling and measurement of emissions from the co-combustion of meat and bone meal with peat in a fluidised bed.
    Cummins EJ; McDonnell KP; Ward SM
    Bioresour Technol; 2006 May; 97(7):903-13. PubMed ID: 15961309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changes and emissions.
    Elliott J; Sharma B; Best N; Glotter M; Dunn JB; Foster I; Miguez F; Mueller S; Wang M
    Environ Sci Technol; 2014 Feb; 48(4):2488-96. PubMed ID: 24456539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of NO
    Li Y; Lin Y; Zhao J; Liu B; Wang T; Wang P; Mao H
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9717-9729. PubMed ID: 30734254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.
    Tiwary A; Colls J
    Sci Total Environ; 2010 Jan; 408(3):607-16. PubMed ID: 19878969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emissions from the combustion of high-potential slurry fuels.
    Nyashina G; Dorokhov V; Kuznetsov G; Strizhak P
    Environ Sci Pollut Res Int; 2022 May; 29(25):37989-38005. PubMed ID: 35067879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of headspace and oxygen level on off-gas emissions from wood pellets in storage.
    Kuang X; Shankar TJ; Sokhansanj S; Lim CJ; Bi XT; Melin S
    Ann Occup Hyg; 2009 Nov; 53(8):807-13. PubMed ID: 19805393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the main air pollutants from different biomasses under combustion atmospheres by artificial neural networks.
    Monteiro TO; Alves PAADSAN; Barradas Filho AO; Villa-Vélez HA; Cruz G
    Chemosphere; 2024 Mar; 352():141484. PubMed ID: 38368962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury (Hg) emissions from domestic biomass combustion for space heating.
    Huang J; Hopke PK; Choi HD; Laing JR; Cui H; Zananski TJ; Chandrasekaran SR; Rattigan OV; Holsen TM
    Chemosphere; 2011 Sep; 84(11):1694-9. PubMed ID: 21620435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.
    Guo F; Zhong Z
    Environ Pollut; 2018 Aug; 239():21-29. PubMed ID: 29635091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis and kinetic modelling of dioxin formation and emissions from power boilers firing salt-laden hog fuel.
    Duo W; Leclerc D
    Chemosphere; 2007 Apr; 67(9):S164-76. PubMed ID: 17234244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NO and SO
    Yanik J; Duman G; Karlström O; Brink A
    J Environ Manage; 2018 Dec; 227():155-161. PubMed ID: 30176435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the production of bio-energy from wood biomass. Italian case study.
    González-García S; Bacenetti J
    Sci Total Environ; 2019 Jan; 647():158-168. PubMed ID: 30077846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.