BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25543831)

  • 1. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ EQCM Study Examining Irreversible Changes the Sulfur-Carbon Cathode in Lithium-Sulfur Batteries.
    Wu HL; Huff LA; Esbenshade JL; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20820-8. PubMed ID: 26317893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysulfide Speciation and Migration in Catholyte Lithium-Sulfur Cells.
    Sadd M; Agostini M; Xiong S; Matic A
    Chemphyschem; 2022 Feb; 23(4):e202100853. PubMed ID: 34939728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium-Sulfur Batteries.
    Suriyakumar S; Kathiresan M; Stephan AM
    ACS Omega; 2019 Feb; 4(2):3894-3903. PubMed ID: 31459600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study.
    Zou Q; Lu YC
    J Phys Chem Lett; 2016 Apr; 7(8):1518-25. PubMed ID: 27050386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-functionalized mesoporous carbons as sulfur hosts in Li-S batteries: increasing the affinity of polysulfide intermediates to enhance performance.
    See KA; Jun YS; Gerbec JA; Sprafke JK; Wudl F; Stucky GD; Seshadri R
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10908-16. PubMed ID: 24524220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Construction of Mo
    Yu B; Huang A; Chen D; Srinivas K; Zhang X; Wang X; Wang B; Ma F; Liu C; Zhang W; He J; Wang Z; Chen Y
    Small; 2021 Jun; 17(23):e2100460. PubMed ID: 33891797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals.
    Huang S; Wang Y; Hu J; Lim YV; Kong D; Zheng Y; Ding M; Pam ME; Yang HY
    ACS Nano; 2018 Sep; 12(9):9504-9512. PubMed ID: 30148605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Li-S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge.
    Zheng D; Liu D; Harris JB; Ding T; Si J; Andrew S; Qu D; Yang XQ; Qu D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4326-4332. PubMed ID: 27612389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability.
    Dirlam PT; Park J; Simmonds AG; Domanik K; Arrington CB; Schaefer JL; Oleshko VP; Kleine TS; Char K; Glass RS; Soles CL; Kim C; Pinna N; Sung YE; Pyun J
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13437-48. PubMed ID: 27171646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries.
    Al Salem H; Babu G; Rao CV; Arava LM
    J Am Chem Soc; 2015 Sep; 137(36):11542-5. PubMed ID: 26331670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.