BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25543831)

  • 41. Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries.
    Moon S; Jung YH; Jung WK; Jung DS; Choi JW; Kim DK
    Adv Mater; 2013 Dec; 25(45):6547-53. PubMed ID: 24018843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.
    Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20369-76. PubMed ID: 26305234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In Situ Imaging Polysulfides Electrochemistry of Li-S Batteries in a Hollow Carbon Nanotubule Wet Electrochemical Cell.
    Wang Z; Tang Y; Fu X; Wang J; Peng Z; Zhang L; Huang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55971-55981. PubMed ID: 33284589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode.
    Ma L; Zhuang HL; Wei S; Hendrickson KE; Kim MS; Cohn G; Hennig RG; Archer LA
    ACS Nano; 2016 Jan; 10(1):1050-9. PubMed ID: 26634409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery.
    See KA; Wu HL; Lau KC; Shin M; Cheng L; Balasubramanian M; Gallagher KG; Curtiss LA; Gewirth AA
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34360-34371. PubMed ID: 27998132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development.
    Chung SH; Han P; Manthiram A
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4709-17. PubMed ID: 26824143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries.
    Gu S; Wen Z; Qian R; Jin J; Wang Q; Wu M; Zhuo S
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34379-34386. PubMed ID: 27998100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries.
    Ling M; Yan W; Kawase A; Zhao H; Fu Y; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31741-31745. PubMed ID: 28809469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chevrel Phase Mo
    Xu J; Wang H; He T; Yan X; Yu J; Bi J; Ye D; Yao W; Tang Y; Zhao H; Zhang J
    Small; 2023 Jul; 19(29):e2300042. PubMed ID: 37046185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reactions between methanethiol and biologically produced sulfur particles.
    van Leerdam RC; van den Bosch PL; Lens PN; Janssen AJ
    Environ Sci Technol; 2011 Feb; 45(4):1320-6. PubMed ID: 21210662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram.
    Dibden JW; Smith JW; Zhou N; Garcia-Araez N; Owen JR
    Chem Commun (Camb); 2016 Oct; 52(87):12885-12888. PubMed ID: 27738668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mirror Plane Effect of Magnetoplumbite-Type Oxide Restraining Long-Chain Polysulfides Disproportionation for High Loading Lithium Sulfur Batteries.
    Zhou L; Zhang X; Hao W; Sun S; Wang R; Liu H
    Small Methods; 2024 Jun; ():e2400475. PubMed ID: 38837890
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LiTFSI Concentration Optimization in TEGDME Solvent for Lithium-Oxygen Batteries.
    Chen J; Chen C; Huang T; Yu A
    ACS Omega; 2019 Dec; 4(24):20708-20714. PubMed ID: 31858056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification.
    Barchasz C; Molton F; Duboc C; LeprĂȘtre JC; Patoux S; Alloin F
    Anal Chem; 2012 May; 84(9):3973-80. PubMed ID: 22482872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Polysulfide Speciation on Mg Anode Passivation in Mg-S Batteries.
    Qian MD; Laskowski FAL; Ware SD; See KA
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36754849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revealing reaction mechanisms of nanoconfined Li
    Liu Z; Deng H; Hu W; Gao F; Zhang S; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2018 May; 20(17):11713-11721. PubMed ID: 29683168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Titanium silicalite as a radical-redox mediator for high-energy-density lithium-sulfur batteries.
    Chan D; Xiao Z; Guo Z; Lai Y; Zhang Y; Zhou S; Ding X; Nie H; Yang Z
    Nanoscale; 2019 Sep; 11(36):16968-16977. PubMed ID: 31495853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.