These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25543831)

  • 61. New approaches for high energy density lithium-sulfur battery cathodes.
    Evers S; Nazar LF
    Acc Chem Res; 2013 May; 46(5):1135-43. PubMed ID: 23054430
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.
    Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA
    J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Establishing reaction networks in the 16-electron sulfur reduction reaction.
    Liu R; Wei Z; Peng L; Zhang L; Zohar A; Schoeppner R; Wang P; Wan C; Zhu D; Liu H; Wang Z; Tolbert SH; Dunn B; Huang Y; Sautet P; Duan X
    Nature; 2024 Feb; 626(7997):98-104. PubMed ID: 38297176
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A highly efficient polysulfide mediator for lithium-sulfur batteries.
    Liang X; Hart C; Pang Q; Garsuch A; Weiss T; Nazar LF
    Nat Commun; 2015 Jan; 6():5682. PubMed ID: 25562485
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stability of the Solid Electrolyte Interface on the Li Electrode in Li-S Batteries.
    Zheng D; Yang XQ; Qu D
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10360-6. PubMed ID: 27045986
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Self-Assembled Protein Nanofilter for Trapping Polysulfides and Promoting Li
    Fu X; Li C; Wang Y; Scudiero L; Liu J; Zhong WH
    J Phys Chem Lett; 2018 May; 9(10):2450-2459. PubMed ID: 29688730
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer.
    Wei H; Ma J; Li B; Zuo Y; Xia D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries.
    Huang S; Fan W; Guo X; Meng F; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21567-75. PubMed ID: 25397991
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S
    Wręczycki J; Bieliński DM; Kozanecki M; Maczugowska P; Mlostoń G
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32517292
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries.
    Li H; Chen C; Yan Y; Yan T; Cheng C; Sun D; Zhang L
    Adv Mater; 2021 Dec; 33(51):e2105067. PubMed ID: 34632643
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 74. LiTFSI Concentration Optimization in TEGDME Solvent for Lithium-Oxygen Batteries.
    Chen J; Chen C; Huang T; Yu A
    ACS Omega; 2019 Dec; 4(24):20708-20714. PubMed ID: 31858056
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries.
    Gordin ML; Dai F; Chen S; Xu T; Song J; Tang D; Azimi N; Zhang Z; Wang D
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8006-10. PubMed ID: 24833106
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries.
    Preefer MB; Oschmann B; Hawker CJ; Seshadri R; Wudl F
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15118-15122. PubMed ID: 28984016
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li
    Perez Beltran S; Balbuena PB
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):491-502. PubMed ID: 33377389
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Noticeable Role of TFSI
    Giacco D; Carboni M; Brutti S; Marrani AG
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31710-31720. PubMed ID: 28853551
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation.
    Partovi-Azar P; Kühne TD; Kaghazchi P
    Phys Chem Chem Phys; 2015 Sep; 17(34):22009-14. PubMed ID: 26235886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.