These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25543852)

  • 21. Herbivores influence the growth, reproduction, and morphology of a widespread Arctic willow.
    Christie KS; Ruess RW; Lindberg MS; Mulder CP
    PLoS One; 2014; 9(7):e101716. PubMed ID: 25047582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.
    Rhodes AC; Larsen RT; Maxwell JD; St Clair SB
    Oecologia; 2018 Nov; 188(3):707-719. PubMed ID: 30242473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: an experimental study.
    Milligan HT; Koricheva J
    J Anim Ecol; 2013 Jul; 82(4):739-48. PubMed ID: 23363076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deer browsing alters sound propagation in temperate deciduous forests.
    Boycott TJ; Gao J; Gall MD
    PLoS One; 2019; 14(2):e0211569. PubMed ID: 30759129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing long-term impacts of ungulate herbivory on forest-recruitment dynamics at community and species level contrasting tree densities versus maximum heights.
    Nopp-Mayr U; Reimoser S; Reimoser F; Sachser F; Obermair L; Gratzer G
    Sci Rep; 2020 Nov; 10(1):20274. PubMed ID: 33219306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertical zonation of browse quality in tree canopies exposed to a size-structured guild of African browsing ungulates.
    Woolnough A; du Toit J
    Oecologia; 2001 Dec; 129(4):585-590. PubMed ID: 24577699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: moose, red deer, and roe deer.
    Czernik M; Taberlet P; Swisłocka M; Czajkowska M; Duda N; Ratkiewicz M
    Acta Theriol (Warsz); 2013; 58(4):379-386. PubMed ID: 24244041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.).
    Turczański K; Dyderski MK; Rutkowski P
    Sci Total Environ; 2021 Jan; 752():141787. PubMed ID: 32889266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large herbivores trigger spatiotemporal changes in forest plant diversity.
    Beguin J; Côté SD; Vellend M
    Ecology; 2022 Sep; 103(9):e3739. PubMed ID: 35488368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human altered disturbance patterns and forest succession: impacts of competition and ungulate herbivory.
    Maxwell JD; Rhodes AC; St Clair SB
    Oecologia; 2019 Apr; 189(4):1061-1070. PubMed ID: 30887106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore.
    van Beest FM; Mysterud A; Loe LE; Milner JM
    J Anim Ecol; 2010 Jul; 79(4):910-22. PubMed ID: 20443990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The scale-dependent effectiveness of wildlife management: A case study on British deer.
    Fattorini N; Lovari S; Watson P; Putman R
    J Environ Manage; 2020 Dec; 276():111303. PubMed ID: 32947117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy browsing affects the hydraulic capacity of Ceanothus rigidus (Rhamnaceae).
    Pittermann J; Lance J; Poster L; Baer A; Fox LR
    Oecologia; 2014 Jul; 175(3):801-10. PubMed ID: 24817157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Herbivory and climate as drivers of woody plant growth: Do deer decrease the impacts of warming?
    Vuorinen KEM; Rao SJ; Hester AJ; Speed JDM
    Ecol Appl; 2020 Sep; 30(6):e02119. PubMed ID: 32160360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Top-down and bottom-up forces explain patch utilization by two deer species and forest recruitment.
    Ramirez JI; Poorter L; Jansen PA; den Ouden J; Siewert M; Olofsson J
    Oecologia; 2023 Jan; 201(1):229-240. PubMed ID: 36424509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brown world forests: increased ungulate browsing keeps temperate trees in recruitment bottlenecks in resource hotspots.
    Churski M; Bubnicki JW; Jędrzejewska B; Kuijper DP; Cromsigt JP
    New Phytol; 2017 Apr; 214(1):158-168. PubMed ID: 27893157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna.
    Fornara DA; Du Toit JT
    Ecology; 2007 Jan; 88(1):200-9. PubMed ID: 17489468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposing deer and caterpillar foraging preferences may prevent reductions in songbird prey biomass in historically overbrowsed forests.
    Godfrey RK; Yerger EH; Nuttle TJ
    Ecol Evol; 2018 Jan; 8(1):560-571. PubMed ID: 29321893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen.
    Murray BD; Webster CR; Bump JK
    Ecology; 2013 Jun; 94(6):1317-26. PubMed ID: 23923495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of a spatial auto-correlation in the browsing level of four major European tree species.
    Hagen R; Suchant R
    Ecol Evol; 2020 Aug; 10(15):8517-8527. PubMed ID: 32788997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.