BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 25544246)

  • 1. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.
    Soukup J; Jandera P
    J Chromatogr A; 2014 Dec; 1374():102-111. PubMed ID: 25544246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the temperature dependence of water adsorption on silica-based stationary phases in hydrophilic interaction liquid chromatography.
    Bartó E; Felinger A; Jandera P
    J Chromatogr A; 2017 Mar; 1489():143-148. PubMed ID: 28213986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of hydration process on silica hydride surfaces by microcalorimetry and water adsorption.
    Bocian S; Rychlicki G; Matyska M; Pesek J; Buszewski B
    J Colloid Interface Sci; 2014 Feb; 416():161-6. PubMed ID: 24370416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient elution in aqueous normal-phase liquid chromatography on hydrosilated silica-based stationary phases.
    Soukup J; Janás P; Jandera P
    J Chromatogr A; 2013 Apr; 1286():111-8. PubMed ID: 23497850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma.
    Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D
    J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.
    Rathnasekara R; El Rassi Z
    J Chromatogr A; 2017 Jul; 1508():24-32. PubMed ID: 28599861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids.
    Soukup J; Jandera P
    J Chromatogr A; 2012 Mar; 1228():125-34. PubMed ID: 21782183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents.
    Redón L; Subirats X; Rosés M
    J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns.
    Poole CF
    J Chromatogr A; 2019 Aug; 1600():112-126. PubMed ID: 31128882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic interaction liquid chromatography columns classification by effect of solvation and chemometric methods.
    Noga S; Bocian S; Buszewski B
    J Chromatogr A; 2013 Feb; 1278():89-97. PubMed ID: 23351397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography.
    Jandera P; Janás P; Škeříková V; Urban J
    J Sep Sci; 2017 Apr; 40(7):1434-1448. PubMed ID: 28133899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Definition of the Stationary Phase Volume in Mixed-Mode Chromatographic Columns in Hydrophilic Liquid Chromatography.
    Jandera P; Hájek T
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling solvation on the chemically modified silica surfaces.
    Buszewski B; Bocian S; Nowaczyk A
    J Sep Sci; 2010 Jul; 33(14):2060-8. PubMed ID: 20572263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of solvation processes on cholesterol bonded phases.
    Buszewski B; Bocian S; Matyska M; Pesek J
    J Chromatogr A; 2011 Jan; 1218(3):441-8. PubMed ID: 21159345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention.
    Dinh NP; Jonsson T; Irgum K
    J Chromatogr A; 2013 Dec; 1320():33-47. PubMed ID: 24200388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.
    Borges EM
    J Chromatogr Sci; 2015 Apr; 53(4):580-97. PubMed ID: 25234386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System maps for retention of small neutral compounds on a biphenylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography.
    Atapattu SN; Poole CF; Praseuth MB
    J Chromatogr A; 2016 Dec; 1478():68-74. PubMed ID: 27916389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary and mobile phases in hydrophilic interaction chromatography: a review.
    Jandera P
    Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.