These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25544338)

  • 21. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preferential sorption of some natural organic matter fractions to titanium dioxide nanoparticles: influence of pH and ionic strength.
    Mwaanga P; Carraway ER; Schlautman MA
    Environ Monit Assess; 2014 Dec; 186(12):8833-44. PubMed ID: 25213564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of filtration mechanisms of food and industrial grade TiO
    Chen C; Marcus IM; Waller T; Walker SL
    Anal Bioanal Chem; 2018 Sep; 410(24):6133-6140. PubMed ID: 29781046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.
    Jassby D; Farner Budarz J; Wiesner M
    Environ Sci Technol; 2012 Jul; 46(13):6934-41. PubMed ID: 22225505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium.
    Allouni ZE; Cimpan MR; Høl PJ; Skodvin T; Gjerdet NR
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):83-7. PubMed ID: 18980834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.
    Shaban YA; El Sayed MA; El Maradny AA; Al Farawati RKh; Al Zobidi MI
    Chemosphere; 2013 Apr; 91(3):307-13. PubMed ID: 23261126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influences of anion concentration and valence on dispersion and aggregation of titanium dioxide nanoparticles in aqueous solutions.
    He H; Cheng Y; Yang C; Zeng G; Zhu C; Yan Z
    J Environ Sci (China); 2017 Apr; 54():135-141. PubMed ID: 28391922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The study of core-shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles.
    Ma J; Yuan L; Ding M; Wang S; Ren F; Zhang J; Du S; Li F; Zhou X
    Biosens Bioelectron; 2011 Jan; 26(5):2791-5. PubMed ID: 21094594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.
    Xu X; Xu N; Cheng X; Guo P; Chen Z; Wang D
    Chemosphere; 2017 Feb; 169():9-17. PubMed ID: 27855333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.
    Hua Z; Zhang J; Bai X; Ye Z; Tang Z; Liang L; Liu Y
    Sci Total Environ; 2016 Jan; 539():196-205. PubMed ID: 26360460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
    Domingos RF; Tufenkji N; Wilkinson KI
    Environ Sci Technol; 2009 Mar; 43(5):1282-6. PubMed ID: 19350891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of nanosized titanium dioxide on the physicochemical stability of activated sludge flocs using the thermodynamic approach and Kelvin probe force microscopy.
    Yang X; Cui F; Guo X; Li D
    Water Res; 2013 Aug; 47(12):3947-58. PubMed ID: 23706860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.
    Cheng F; Lorch M; Sajedin SM; Kelly SM; Kornherr A
    ChemSusChem; 2013 Aug; 6(8):1392-9. PubMed ID: 23868805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH.
    Fang J; Xu MJ; Wang DJ; Wen B; Han JY
    Water Res; 2013 Mar; 47(3):1399-408. PubMed ID: 23276424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.
    Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z
    J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments.
    Liu X; Chen G; Erwin JG; Su C
    Environ Pollut; 2014 Jan; 184():570-8. PubMed ID: 24184379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.