BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25544565)

  • 1. Induction of rhabdomyosarcoma by embedded military-grade tungsten/nickel/cobalt not by tungsten/nickel/iron in the B6C3F1 mouse.
    Emond CA; Vergara VB; Lombardini ED; Mog SR; Kalinich JF
    Int J Toxicol; 2015; 34(1):44-54. PubMed ID: 25544565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded weapons-grade tungsten alloy shrapnel rapidly induces metastatic high-grade rhabdomyosarcomas in F344 rats.
    Kalinich JF; Emond CA; Dalton TK; Mog SR; Coleman GD; Kordell JE; Miller AC; McClain DE
    Environ Health Perspect; 2005 Jun; 113(6):729-34. PubMed ID: 15929896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys.
    Schuster BE; Roszell LE; Murr LE; Ramirez DA; Demaree JD; Klotz BR; Rosencrance AB; Dennis WE; Bao W; Perkins EJ; Dillman JF; Bannon DI
    Toxicol Appl Pharmacol; 2012 Nov; 265(1):128-38. PubMed ID: 22982072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles.
    Roedel EQ; Cafasso DE; Lee KW; Pierce LM
    Toxicol Appl Pharmacol; 2012 Feb; 259(1):74-86. PubMed ID: 22198552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects.
    Miller AC; Mog S; McKinney L; Luo L; Allen J; Xu J; Page N
    Carcinogenesis; 2001 Jan; 22(1):115-25. PubMed ID: 11159749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotoxic changes to rodent cells exposed in vitro to tungsten, nickel, cobalt and iron.
    Bardack S; Dalgard CL; Kalinich JF; Kasper CE
    Int J Environ Res Public Health; 2014 Mar; 11(3):2922-40. PubMed ID: 24619124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of carcinogenicity of tungsten alloy particles.
    Harris RM; Williams TD; Waring RH; Hodges NJ
    Toxicol Appl Pharmacol; 2015 Mar; 283(3):223-33. PubMed ID: 25620057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro.
    Harris RM; Williams TD; Hodges NJ; Waring RH
    Toxicol Appl Pharmacol; 2011 Jan; 250(1):19-28. PubMed ID: 20934443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components.
    Verma R; Xu X; Jaiswal MK; Olsen C; Mears D; Caretti G; Galdzicki Z
    Toxicol Appl Pharmacol; 2011 Jun; 253(3):178-87. PubMed ID: 21513724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urinary and serum metal levels as indicators of embedded tungsten alloy fragments.
    Kalinich JF; Vergara VB; Emond CA
    Mil Med; 2008 Aug; 173(8):754-8. PubMed ID: 18751592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy.
    Emond CA; Vergara VB; Lombardini ED; Mog SR; Kalinich JF
    Toxics; 2015 Dec; 3(4):499-514. PubMed ID: 29051474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metals and health: a clinical toxicological perspective on tungsten and review of the literature.
    van der Voet GB; Todorov TI; Centeno JA; Jonas W; Ives J; Mullick FG
    Mil Med; 2007 Sep; 172(9):1002-5. PubMed ID: 17937367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do metals that translocate to the brain exacerbate traumatic brain injury?
    Kalinich JF; Kasper CE
    Med Hypotheses; 2014 May; 82(5):558-62. PubMed ID: 24613092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of established skeletal muscle cell lines to assess potential toxicity from embedded metal fragments.
    Kane MA; Kasper CE; Kalinich JF
    Toxicol In Vitro; 2009 Mar; 23(2):356-9. PubMed ID: 19124068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2).
    Miller AC; Brooks K; Smith J; Page N
    Mol Cell Biochem; 2004 Jan; 255(1-2):247-56. PubMed ID: 14971665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential late health effects of depleted uranium and tungsten used in armor-piercing munitions: comparison of neoplastic transformation and genotoxicity with the known carcinogen nickel.
    Miller AC; Xu J; Stewart M; Prasanna PG; Page N
    Mil Med; 2002 Feb; 167(2 Suppl):120-2. PubMed ID: 11873492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue distribution of tungsten in mice following oral exposure to sodium tungstate.
    Guandalini GS; Zhang L; Fornero E; Centeno JA; Mokashi VP; Ortiz PA; Stockelman MD; Osterburg AR; Chapman GG
    Chem Res Toxicol; 2011 Apr; 24(4):488-93. PubMed ID: 21375269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical evaluation of chemically induced rhabdomyosarcomas in rats: diagnostic utility of MyoD1.
    Newsholme SJ; Zimmerman DM
    Toxicol Pathol; 1997; 25(5):470-4. PubMed ID: 9323836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of trace-metal concentrations in Western Reef heron (Egretta gularis) and Siberian gull (Larus heuglini) from southern Iran.
    Mansouri B; Pourkhabbaz A; Babaei H; Hoshyari E; Khodaparast SH; Mirzajani A
    Arch Environ Contam Toxicol; 2012 Aug; 63(2):280-7. PubMed ID: 22481524
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.