BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 25544761)

  • 1. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer.
    Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y
    Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditionally Reprogrammed Cells from Patient-Derived Xenograft to Model Neuroendocrine Prostate Cancer Development.
    Ci X; Hao J; Dong X; Xue H; Wu R; Choi SYC; Haegert AM; Collins CC; Liu X; Lin D; Wang Y
    Cells; 2020 Jun; 9(6):. PubMed ID: 32512818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer.
    Ci X; Hao J; Dong X; Choi SY; Xue H; Wu R; Qu S; Gout PW; Zhang F; Haegert AM; Fazli L; Crea F; Ong CJ; Zoubeidi A; He HH; Gleave ME; Collins CC; Lin D; Wang Y
    Cancer Res; 2018 May; 78(10):2691-2704. PubMed ID: 29487201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SRRM4 gene expression correlates with neuroendocrine prostate cancer.
    Li Y; Zhang Q; Lovnicki J; Chen R; Fazli L; Wang Y; Gleave M; Huang J; Dong X
    Prostate; 2019 Jan; 79(1):96-104. PubMed ID: 30155992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer.
    Flores-Morales A; Bergmann TB; Lavallee C; Batth TS; Lin D; Lerdrup M; Friis S; Bartels A; Kristensen G; Krzyzanowska A; Xue H; Fazli L; Hansen KH; Røder MA; Brasso K; Moreira JM; Bjartell A; Wang Y; Olsen JV; Collins CC; Iglesias-Gato D
    Clin Cancer Res; 2019 Jan; 25(2):595-608. PubMed ID: 30274982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1.
    Hsu EC; Rice MA; Bermudez A; Marques FJG; Aslan M; Liu S; Ghoochani A; Zhang CA; Chen YS; Zlitni A; Kumar S; Nolley R; Habte F; Shen M; Koul K; Peehl DM; Zoubeidi A; Gambhir SS; Kunder CA; Pitteri SJ; Brooks JD; Stoyanova T
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2032-2042. PubMed ID: 31932422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.
    Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L
    Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089
    [No Abstract]   [Full Text] [Related]  

  • 8. Targeting RET Kinase in Neuroendocrine Prostate Cancer.
    VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM
    Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular model for neuroendocrine prostate cancer progression.
    Chen R; Dong X; Gleave M
    BJU Int; 2018 Oct; 122(4):560-570. PubMed ID: 29569310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer.
    DeLucia DC; Cardillo TM; Ang L; Labrecque MP; Zhang A; Hopkins JE; De Sarkar N; Coleman I; da Costa RMG; Corey E; True LD; Haffner MC; Schweizer MT; Morrissey C; Nelson PS; Lee JK
    Clin Cancer Res; 2021 Feb; 27(3):759-774. PubMed ID: 33199493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of neuroendocrine prostate cancer.
    Berman-Booty LD; Knudsen KE
    Endocr Relat Cancer; 2015 Feb; 22(1):R33-49. PubMed ID: 25349195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer.
    Asrani K; Torres AF; Woo J; Vidotto T; Tsai HK; Luo J; Corey E; Hanratty B; Coleman I; Yegnasubramanian S; De Marzo AM; Nelson PS; Haffner MC; Lotan TL
    J Pathol; 2021 Dec; 255(4):425-437. PubMed ID: 34431104
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S
    Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.
    Lee AR; Gan Y; Xie N; Ramnarine VR; Lovnicki JM; Dong X
    Cancer Sci; 2019 Jan; 110(1):245-255. PubMed ID: 30417466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung.
    Shibata T; Kokubu A; Miyamoto M; Hosoda F; Gotoh M; Tsuta K; Asamura H; Matsuno Y; Kondo T; Imoto I; Inazawa J; Hirohashi S
    Oncogene; 2010 Aug; 29(33):4671-81. PubMed ID: 20543864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer.
    Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T
    Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.
    Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D
    Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma.
    Tsai HK; Lehrer J; Alshalalfa M; Erho N; Davicioni E; Lotan TL
    BMC Cancer; 2017 Nov; 17(1):759. PubMed ID: 29132337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of neuroendocrine acquisition and biomarker expression between neuroendocrine and usual prostatic carcinoma.
    Xiao GQ; Ho G; Suen C; Hurth KM
    Prostate; 2021 Jun; 81(8):469-477. PubMed ID: 33848377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.