These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25544766)

  • 1. Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo.
    Purroy N; Abrisqueta P; Carabia J; Carpio C; Palacio C; Bosch F; Crespo M
    Oncotarget; 2015 Apr; 6(10):7632-43. PubMed ID: 25544766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of BCR signaling using the Syk inhibitor TAK-659 prevents stroma-mediated signaling in chronic lymphocytic leukemia cells.
    Purroy N; Carabia J; Abrisqueta P; Egia L; Aguiló M; Carpio C; Palacio C; Crespo M; Bosch F
    Oncotarget; 2017 Jan; 8(1):742-756. PubMed ID: 27888629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma.
    Plander M; Ugocsai P; Seegers S; Orsó E; Reichle A; Schmitz G; Hofstädter F; Brockhoff G
    Ann Hematol; 2011 Dec; 90(12):1381-90. PubMed ID: 21465189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering.
    Tromp JM; Tonino SH; Elias JA; Jaspers A; Luijks DM; Kater AP; van Lier RA; van Oers MH; Eldering E
    Oncogene; 2010 Sep; 29(36):5071-82. PubMed ID: 20581863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the proliferative and chemoresistant compartment in chronic lymphocytic leukemia by inhibiting survivin protein.
    Purroy N; Abrisqueta P; Carabia J; Carpio C; Calpe E; Palacio C; Castellví J; Crespo M; Bosch F
    Leukemia; 2014 Oct; 28(10):1993-2004. PubMed ID: 24618734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles.
    Plander M; Seegers S; Ugocsai P; Diermeier-Daucher S; Iványi J; Schmitz G; Hofstädter F; Schwarz S; Orsó E; Knüchel R; Brockhoff G
    Leukemia; 2009 Nov; 23(11):2118-28. PubMed ID: 19657365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cell culture system that mimics chronic lymphocytic leukemia cells microenvironment for drug screening and characterization.
    Natoni A; O'Dwyer M; Santocanale C
    Methods Mol Biol; 2013; 986():217-26. PubMed ID: 23436415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications.
    Crompot E; Van Damme M; Pieters K; Vermeersch M; Perez-Morga D; Mineur P; Maerevoet M; Meuleman N; Bron D; Lagneaux L; Stamatopoulos B
    Haematologica; 2017 Sep; 102(9):1594-1604. PubMed ID: 28596280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow stromal mesenchymal cells induce down regulation of CD20 expression on B-CLL: implications for rituximab resistance in CLL.
    Marquez ME; Hernández-Uzcátegui O; Cornejo A; Vargas P; Da Costa O
    Br J Haematol; 2015 Apr; 169(2):211-8. PubMed ID: 25612644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking the tumour microenvironment: three different co-culture systems induce a similar phenotype but distinct proliferative signals in primary chronic lymphocytic leukaemia cells.
    Hamilton E; Pearce L; Morgan L; Robinson S; Ware V; Brennan P; Thomas NS; Yallop D; Devereux S; Fegan C; Buggins AG; Pepper C
    Br J Haematol; 2012 Sep; 158(5):589-99. PubMed ID: 22712573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion of ZAP-70+ chronic lymphocytic leukemia cells to stromal cells is enhanced by cytokines and blocked by inhibitors of the PI3-kinase pathway.
    Lafarge ST; Johnston JB; Gibson SB; Marshall AJ
    Leuk Res; 2014 Jan; 38(1):109-15. PubMed ID: 23981382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock protein-90 inhibitor, NVP-AUY922, is effective in combination with fludarabine against chronic lymphocytic leukemia cells cultured on CD40L-stromal layer and inhibits their activated/proliferative phenotype.
    Best OG; Mulligan SP
    Leuk Lymphoma; 2012 Nov; 53(11):2314-20. PubMed ID: 22646928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD40 triggering enhances fludarabine-induced apoptosis of chronic lymphocytic leukemia B-cells through autocrine release of tumor necrosis factor-alpha and interferon-gama and tumor necrosis factor receptor-I-II upregulation.
    de Totero D; Tazzari PL; Capaia M; Montera MP; Clavio M; Balleari E; Foa R; Gobbi M
    Haematologica; 2003 Feb; 88(2):148-58. PubMed ID: 12604404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In contrast to high CD49d, low CXCR4 expression indicates the dependency of chronic lymphocytic leukemia (CLL) cells on the microenvironment.
    Kriston C; Plander M; Márk Á; Sebestyén A; Bugyik E; Matolcsy A; Barna G
    Ann Hematol; 2018 Nov; 97(11):2145-2152. PubMed ID: 29955944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stromal cells engineered to express T cell factors induce robust CLL cell proliferation in vitro and in PDX co-transplantations allowing the identification of RAF inhibitors as anti-proliferative drugs.
    Hoferkova E; Seda V; Kadakova S; Verner J; Loja T; Matulova K; Skuhrova Francova H; Ondrouskova E; Filip D; Blavet N; Boudny M; Mladonicka Pavlasova G; Vecera J; Ondrisova L; Pavelkova P; Hlavac K; Kostalova L; Michaelou A; Pospisilova S; Dorazilova J; Chochola V; Jaros J; Doubek M; Jarosova M; Hampl A; Vojtova L; Kren L; Mayer J; Mraz M
    Leukemia; 2024 Aug; 38(8):1699-1711. PubMed ID: 38877102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival.
    Zucchetto A; Benedetti D; Tripodo C; Bomben R; Dal Bo M; Marconi D; Bossi F; Lorenzon D; Degan M; Rossi FM; Rossi D; Bulian P; Franco V; Del Poeta G; Deaglio S; Gaidano G; Tedesco F; Malavasi F; Gattei V
    Cancer Res; 2009 May; 69(9):4001-9. PubMed ID: 19383907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of primary CLL cells with bezafibrate and medroxyprogesterone acetate induces apoptosis and represses the pro-proliferative signal of CD40-ligand, in part through increased 15dDelta12,14,PGJ2.
    Hayden RE; Pratt G; Davies NJ; Khanim FL; Birtwistle J; Delgado J; Pearce C; Sant T; Drayson MT; Bunce CM
    Leukemia; 2009 Feb; 23(2):292-304. PubMed ID: 18923439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of CD38 in proliferating chronic lymphocytic leukemia cells stimulated with CD154 and interleukin-4.
    Willimott S; Baou M; Huf S; Deaglio S; Wagner SD
    Haematologica; 2007 Oct; 92(10):1359-66. PubMed ID: 18024373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment.
    Janel A; Dubois-Galopin F; Bourgne C; Berger J; Tarte K; Boiret-Dupré N; Boisgard S; Verrelle P; Déchelotte P; Tournilhac O; Berger MG
    Stem Cells Dev; 2014 Dec; 23(24):2972-82. PubMed ID: 25055118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL.
    Ringshausen I; Oelsner M; Weick K; Bogner C; Peschel C; Decker T
    Leukemia; 2006 Mar; 20(3):514-20. PubMed ID: 16437144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.