These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25544858)

  • 21. Proteomics in the investigation of HIV-1 interactions with host proteins.
    Li M
    Proteomics Clin Appl; 2015 Feb; 9(1-2):221-34. PubMed ID: 25523935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mass Spectrometry-Based Proteomics of Fungal Pathogenesis, Host-Fungal Interactions, and Antifungal Development.
    Ball B; Bermas A; Carruthers-Lay D; Geddes-McAlister J
    J Fungi (Basel); 2019 Jun; 5(2):. PubMed ID: 31212923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systems-wide proteomic characterization of combinatorial post-translational modification patterns.
    Young NL; Plazas-Mayorca MD; Garcia BA
    Expert Rev Proteomics; 2010 Feb; 7(1):79-92. PubMed ID: 20121478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the Human-Nipah Virus Protein-Protein Interactome.
    Martinez-Gil L; Vera-Velasco NM; Mingarro I
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28904190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of opsins and thyroid hormone-induced retinal development using isotope-coded affinity tags (ICAT) and mass spectrometry.
    Allison WT; Veldhoen KM; Hawryshyn CW
    Mol Vis; 2006 Jun; 12():655-72. PubMed ID: 16785855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection.
    Chien KY; Liu HC; Goshe MB
    J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative Proteomic Profiling of Cryptococcus neoformans.
    Ball B; Geddes-McAlister J
    Curr Protoc Microbiol; 2019 Dec; 55(1):e94. PubMed ID: 31797572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection.
    Zhang LK; Wang B; Xin Q; Shang W; Shen S; Xiao G; Deng F; Wang H; Hu Z; Wang M
    J Virol; 2019 May; 93(10):. PubMed ID: 30842332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L.
    Soares EA; Werth EG; Madroñero LJ; Ventura JA; Rodrigues SP; Hicks LM; Fernandes PM
    J Proteomics; 2017 Jan; 151():275-283. PubMed ID: 27343761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods review: Mass spectrometry analysis of RNAPII complexes.
    Burriss KH; Mosley AL
    Methods; 2019 Apr; 159-160():105-114. PubMed ID: 30902665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.
    Jiang G; Santos Rocha C; Hirao LA; Mendes EA; Tang Y; Thompson GR; Wong JK; Dandekar S
    mBio; 2017 May; 8(3):. PubMed ID: 28465428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic composition of Nipah virus-like particles.
    Vera-Velasco NM; García-Murria MJ; Sánchez Del Pino MM; Mingarro I; Martinez-Gil L
    J Proteomics; 2018 Feb; 172():190-200. PubMed ID: 29092793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass Spectrometry for Proteomics-Based Investigation.
    Woods AG; Sokolowska I; Ngounou Wetie AG; Channaveerappa D; Dupree EJ; Jayathirtha M; Aslebagh R; Wormwood KL; Darie CC
    Adv Exp Med Biol; 2019; 1140():1-26. PubMed ID: 31347039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantify this! Report on a round table discussion on quantitative mass spectrometry in proteomics.
    Quadroni M; Ducret A; Stöcklin R
    Proteomics; 2004 Aug; 4(8):2211-5. PubMed ID: 15274113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New dimensions in the study of protein complexes using quantitative mass spectrometry.
    Oeljeklaus S; Meyer HE; Warscheid B
    FEBS Lett; 2009 Jun; 583(11):1674-83. PubMed ID: 19376113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of proteomics to investigation of viral diseases in livestock and poultry.
    Li H; Guo H; Song Y; Li R
    Acta Virol; 2021; 65(4):339-349. PubMed ID: 34978841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomics Profiling of Host Cell Response via Protein Expression and Phosphorylation upon Dengue Virus Infection.
    Miao M; Yu F; Wang D; Tong Y; Yang L; Xu J; Qiu Y; Zhou X; Zhao X
    Virol Sin; 2019 Oct; 34(5):549-562. PubMed ID: 31134586
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.