These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25544864)

  • 21. Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy.
    Schürmann G; Noell W; Staufer U; de Rooij NF; Eckert R; Freyland JM; Heinzelmann H
    Appl Opt; 2001 Oct; 40(28):5040-5. PubMed ID: 18364783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications.
    Muniswamy V; Bangalore Muniraju C; Kumar Pattnaik P; Krishnaswamy N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever.
    Dai Z; King WP; Park K
    Nanotechnology; 2009 Mar; 20(9):095301. PubMed ID: 19417484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically detected terahertz electron spin resonance using SOI-based thin piezoresistive microcantilevers.
    Ohmichi E; Miki T; Horie H; Okamoto T; Takahashi H; Higashi Y; Itoh S; Ohta H
    J Magn Reson; 2018 Feb; 287():41-46. PubMed ID: 29288889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micromachined needle arrays for drug delivery or fluid extraction.
    Brazzle J; Papautsky I; Frazier AB
    IEEE Eng Med Biol Mag; 1999; 18(6):53-8. PubMed ID: 10576073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.
    Logan A; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1074-84. PubMed ID: 19473926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quartz-crystal scanning probe microcantilevers with a silicon tip based on direct bonding of silicon and quartz.
    Takahashi A; Esashi M; Ono T
    Nanotechnology; 2010 Oct; 21(40):405502. PubMed ID: 20829565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip.
    Kaisei K; Kobayashi K; Matsushige K; Yamada H
    Ultramicroscopy; 2010 May; 110(6):733-6. PubMed ID: 20334977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quality assessment of atomic force microscopy probes by scanning electron microscopy: correlation of tip structure with rendered images.
    Taatjes DJ; Quinn AS; Lewis MR; Bovill EG
    Microsc Res Tech; 1999 Mar; 44(5):312-26. PubMed ID: 10090206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous Integration of CMOS Sensors and Fluidic Networks Using Wafer-Level Molding.
    Lindsay M; Bishop K; Sengupta S; Co M; Cumbie M; Chen CH; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1046-1055. PubMed ID: 30010595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryogenic positioning and alignment with micrometer precision in a magnetic resonance force microscope.
    Isaac CE; Curley EA; Nasr PT; Nguyen HL; Marohn JA
    Rev Sci Instrum; 2018 Jan; 89(1):013707. PubMed ID: 29390684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collecting optical coherence elastography depth profiles with a micromachined cantilever probe.
    Chavan D; Mo J; de Groot M; Meijering A; de Boer JF; Iannuzzi D
    Opt Lett; 2013 May; 38(9):1476-8. PubMed ID: 23632523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lorentz force actuation of a heated atomic force microscope cantilever.
    Lee B; Prater CB; King WP
    Nanotechnology; 2012 Feb; 23(5):055709. PubMed ID: 22237044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips.
    Liu X; Zhu H; Sabó J; Lánský Z; Neužil P
    Sci Rep; 2022 Nov; 12(1):18911. PubMed ID: 36344576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced Surface Probing Using a Dual-Mode NSOM-AFM Silicon-Based Photosensor.
    Karelits M; Lozitsky E; Chelly A; Zalevsky Z; Karsenty A
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31888260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-Chip Integration of Pressure Plus 2-Axis (X/Z) Acceleration Composite TPMS Sensors with a Single-Sided Bulk-Micromachining Technique.
    Wang J; Song F
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31311131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticles.
    Grüter RR; Vörös J; Zambelli T
    Nanoscale; 2013 Feb; 5(3):1097-104. PubMed ID: 23262663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide.
    Min Lee S; Hwan Yum J; Larsen ES; Chul Lee W; Keun Kim S; Bielawski CW; Oh J
    Sci Rep; 2017 Oct; 7(1):13205. PubMed ID: 29038543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial adhesion force quantification by fluidic force microscopy.
    Potthoff E; Ossola D; Zambelli T; Vorholt JA
    Nanoscale; 2015 Mar; 7(9):4070-9. PubMed ID: 25660231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.