These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25545028)
1. Synthetic polymers are more effective than natural flocculants for the clarification of tobacco leaf extracts. Buyel JF; Fischer R J Biotechnol; 2015 Feb; 195():37-42. PubMed ID: 25545028 [TBL] [Abstract][Full Text] [Related]
2. Flocculation increases the efficacy of depth filtration during the downstream processing of recombinant pharmaceutical proteins produced in tobacco. Buyel JF; Fischer R Plant Biotechnol J; 2014 Feb; 12(2):240-52. PubMed ID: 24165151 [TBL] [Abstract][Full Text] [Related]
3. Procedure to Evaluate the Efficiency of Flocculants for the Removal of Dispersed Particles from Plant Extracts. Buyel JF J Vis Exp; 2016 Apr; (110):. PubMed ID: 27166577 [TBL] [Abstract][Full Text] [Related]
4. Cellulose-based filter aids increase the capacity of depth filters during the downstream processing of plant-derived biopharmaceutical proteins. Buyel JF; Opdensteinen P; Fischer R Biotechnol J; 2015 Apr; 10(4):584-91. PubMed ID: 25611947 [TBL] [Abstract][Full Text] [Related]
5. Downstream processing of biopharmaceutical proteins produced in plants: the pros and cons of flocculants. Buyel JF; Fischer R Bioengineered; 2014; 5(2):138-42. PubMed ID: 24637706 [TBL] [Abstract][Full Text] [Related]
6. Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants. Buyel JF; Fischer R Biotechnol J; 2014 Apr; 9(4):566-77. PubMed ID: 24478119 [TBL] [Abstract][Full Text] [Related]
7. Scale-down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves. Buyel JF; Fischer R Biotechnol J; 2014 Mar; 9(3):415-25. PubMed ID: 24323869 [TBL] [Abstract][Full Text] [Related]
8. A downstream process allowing the efficient isolation of a recombinant amphiphilic protein from tobacco leaves. Gecchele E; Schillberg S; Merlin M; Pezzotti M; Avesani L J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jun; 960():34-42. PubMed ID: 24786219 [TBL] [Abstract][Full Text] [Related]
9. Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract. Platis D; Labrou NE J Chromatogr A; 2006 Sep; 1128(1-2):114-24. PubMed ID: 16828788 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the flocculation and de-flocculation performance and mechanism of polymer flocculants. Ponou J; Ide T; Suzuki A; Tsuji H; Wang LP; Dodbiba G; Fujita T Water Sci Technol; 2014; 69(6):1249-58. PubMed ID: 24647191 [TBL] [Abstract][Full Text] [Related]
11. Polymer induced flocculation and separation of particulates from extracts of lignocellulosic materials. Duarte GV; Ramarao BV; Amidon TE Bioresour Technol; 2010 Nov; 101(22):8526-34. PubMed ID: 20605092 [TBL] [Abstract][Full Text] [Related]
12. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan. Zeng T; Hu XQ; Wu H; Yang JW; Zhang HB Int J Biol Macromol; 2019 Jun; 131():760-768. PubMed ID: 30902714 [TBL] [Abstract][Full Text] [Related]
13. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra). Lee CS; Chong MF; Robinson J; Binner E J Environ Manage; 2015 Jul; 157():320-5. PubMed ID: 25929197 [TBL] [Abstract][Full Text] [Related]
14. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233 [TBL] [Abstract][Full Text] [Related]
15. Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans. 't Lam GP; Giraldo JB; Vermuë MH; Olivieri G; Eppink MH; Wijffels RH J Biotechnol; 2016 May; 225():10-7. PubMed ID: 27002231 [TBL] [Abstract][Full Text] [Related]
16. Application of synthetic poly(DADM) flocculants for dye wastewater treatment. Choi JH; Shin WS; Lee SH; Joo DJ; Lee JD; Choi SJ Environ Technol; 2001 Sep; 22(9):1025-33. PubMed ID: 11816765 [TBL] [Abstract][Full Text] [Related]
17. Impact of polymer flocculants on coagulation-microfiltration of surface water. Wang S; Liu C; Li Q Water Res; 2013 Sep; 47(13):4538-46. PubMed ID: 23764603 [TBL] [Abstract][Full Text] [Related]
18. Polyacrylamide and poly(N,N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Liu T; Ding E; Xue F Int J Biol Macromol; 2017 Oct; 103():1107-1112. PubMed ID: 28528941 [TBL] [Abstract][Full Text] [Related]
19. Affinity chromatography for the purification of therapeutic proteins from transgenic maize using immobilized histamine. Platis D; Labrou NE J Sep Sci; 2008 Mar; 31(4):636-45. PubMed ID: 18307162 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Bratskaya S; Schwarz S; Chervonetsky D Water Res; 2004 Jul; 38(12):2955-61. PubMed ID: 15223291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]