These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25545324)

  • 21. Classification of normal and dysphagic swallows by acoustical means.
    Lazareck LJ; Moussavi ZM
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2103-12. PubMed ID: 15605857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of tongue-, jaw-, and swallowing-related muscle coordination during voluntarily triggered swallowing.
    Ono T; Iwata H; Hori K; Tamine K; Kondoh J; Hamanaka S; Maeda Y
    Int J Prosthodont; 2009; 22(5):493-8. PubMed ID: 20095201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic and unsupervised snore sound extraction from respiratory sound signals.
    Azarbarzin A; Moussavi ZM
    IEEE Trans Biomed Eng; 2011 May; 58(5):1156-62. PubMed ID: 20679022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying Machine Learning Algorithms for Automatic Detection of Swallowing from Sound.
    Santoso LF; Baqai F; Gwozdz M; Lange J; Rosenberger MG; Sulzer J; Paydarfar D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2584-2588. PubMed ID: 31946425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Machine Learning and a Combination of Respiratory Flow, Laryngeal Motion, and Swallowing Sounds to Classify Safe and Unsafe Swallowing.
    Inoue K; Yoshioka M; Yagi N; Nagami S; Oku Y
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2529-2541. PubMed ID: 29993526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A system for recording high fidelity cough sound and airflow characteristics.
    Goldsmith WT; Mahmoud AM; Reynolds JS; McKinney WG; Afshari AA; Abaza AA; Frazer DG
    Ann Biomed Eng; 2010 Feb; 38(2):469-77. PubMed ID: 19876736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of swallowing sounds: methodology revisited.
    Cichero JA; Murdoch BE
    Dysphagia; 2002; 17(1):40-9. PubMed ID: 11824392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using an Automated Speech Recognition Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in Children.
    Frakking TT; Chang AB; Carty C; Newing J; Weir KA; Schwerin B; So S
    Dysphagia; 2022 Dec; 37(6):1482-1492. PubMed ID: 35092488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnostic validity of methods for assessment of swallowing sounds: a systematic review.
    Taveira KVM; Santos RS; Leão BLC; Stechman Neto J; Pernambuco L; Silva LKD; De Luca Canto G; Porporatti AL
    Braz J Otorhinolaryngol; 2018; 84(5):638-652. PubMed ID: 29456200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior.
    Sazonov E; Schuckers S; Lopez-Meyer P; Makeyev O; Sazonova N; Melanson EL; Neuman M
    Physiol Meas; 2008 May; 29(5):525-41. PubMed ID: 18427161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior.
    Sazonov ES; Makeyev O; Schuckers S; Lopez-Meyer P; Melanson EL; Neuman MR
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):626-33. PubMed ID: 19789095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustical modeling of swallowing mechanism.
    Shirazi SS; Moussavi ZM
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):81-7. PubMed ID: 20876004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sound component duration of healthy human pharyngoesophageal swallowing: a gender comparison study.
    Morinière S; Beutter P; Boiron M
    Dysphagia; 2006 Jul; 21(3):175-82. PubMed ID: 16897324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The physiologic cause of swallowing sounds: answers from heart sounds and vocal tract acoustics.
    Cichero JA; Murdoch BE
    Dysphagia; 1998; 13(1):39-52. PubMed ID: 9391229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals.
    Dudik JM; Kurosu A; Coyle JL; Sejdić E
    Comput Biol Med; 2015 Apr; 59():10-18. PubMed ID: 25658505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of swallowing sounds using hidden Markov models.
    Aboofazeli M; Moussavi Z
    Med Biol Eng Comput; 2008 Apr; 46(4):307-14. PubMed ID: 18000695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tongue control for speech and swallowing in healthy younger and older subjects.
    Bennett JW; van Lieshout PH; Steele CM
    Int J Orofacial Myology; 2007 Nov; 33():5-18. PubMed ID: 18942477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of the swallowing sounds recorded in the ear, nose and on trachea.
    Sarraf-Shirazi S; Baril JF; Moussavi Z
    Med Biol Eng Comput; 2012 Aug; 50(8):885-90. PubMed ID: 22802141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symmetry and reproducibility of swallowing sounds.
    Takahashi K; Groher ME; Michi K
    Dysphagia; 1994; 9(3):168-73. PubMed ID: 8082325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.