These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 25545638)

  • 21. Enzymes for the biofunctionalization of poly(ethylene terephthalate).
    Zimmermann W; Billig S
    Adv Biochem Eng Biotechnol; 2011; 125():97-120. PubMed ID: 21076908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling.
    Kawai F
    ChemSusChem; 2021 Oct; 14(19):4115-4122. PubMed ID: 33949146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein engineering of stable IsPETase for PET plastic degradation by Premuse.
    Meng X; Yang L; Liu H; Li Q; Xu G; Zhang Y; Guan F; Zhang Y; Zhang W; Wu N; Tian J
    Int J Biol Macromol; 2021 Jun; 180():667-676. PubMed ID: 33753197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insight and engineering of a plastic degrading hydrolase Ple629.
    Li Z; Zhao Y; Wu P; Wang H; Li Q; Gao J; Qin HM; Wei H; Bornscheuer UT; Han X; Wei R; Liu W
    Biochem Biophys Res Commun; 2022 Oct; 626():100-106. PubMed ID: 35981419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties.
    Hong H; Ki D; Seo H; Park J; Jang J; Kim KJ
    Nat Commun; 2023 Jul; 14(1):4556. PubMed ID: 37507390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis.
    Liu C; Shi C; Zhu S; Wei R; Yin CC
    Biochem Biophys Res Commun; 2019 Jan; 508(1):289-294. PubMed ID: 30502092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures.
    Wei R; Breite D; Song C; Gräsing D; Ploss T; Hille P; Schwerdtfeger R; Matysik J; Schulze A; Zimmermann W
    Adv Sci (Weinh); 2019 Jul; 6(14):1900491. PubMed ID: 31380212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient polyethylene terephthalate degradation at moderate temperature: a protein engineering study of LC-cutinase highlights the key role of residue 243.
    Pirillo V; Orlando M; Battaglia C; Pollegioni L; Molla G
    FEBS J; 2023 Jun; 290(12):3185-3202. PubMed ID: 36695006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple structural states of Ca2+-regulated PET hydrolase, Cut190, and its correlation with activity and stability.
    Senga A; Numoto N; Yamashita M; Iida A; Ito N; Kawai F; Oda M
    J Biochem; 2021 Mar; 169(2):207-213. PubMed ID: 32882044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis.
    Ribitsch D; Yebra AO; Zitzenbacher S; Wu J; Nowitsch S; Steinkellner G; Greimel K; Doliska A; Oberdorfer G; Gruber CC; Gruber K; Schwab H; Stana-Kleinschek K; Acero EH; Guebitz GM
    Biomacromolecules; 2013 Jun; 14(6):1769-76. PubMed ID: 23718548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Biochemistry of Four Polyester (PET) Hydrolases*.
    Bååth JA; Borch K; Jensen K; Brask J; Westh P
    Chembiochem; 2021 May; 22(9):1627-1637. PubMed ID: 33351214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus.
    Han Z; Nina MRH; Zhang X; Huang H; Fan D; Bai Y
    J Hazard Mater; 2024 Jul; 472():134532. PubMed ID: 38749251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of mutants of PET-degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability.
    Emori M; Numoto N; Senga A; Bekker GJ; Kamiya N; Kobayashi Y; Ito N; Kawai F; Oda M
    Proteins; 2021 May; 89(5):502-511. PubMed ID: 33340163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes.
    Danso D; Schmeisser C; Chow J; Zimmermann W; Wei R; Leggewie C; Li X; Hazen T; Streit WR
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis.
    Shirke AN; White C; Englaender JA; Zwarycz A; Butterfoss GL; Linhardt RJ; Gross RA
    Biochemistry; 2018 Feb; 57(7):1190-1200. PubMed ID: 29328676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3.
    Billig S; Oeser T; Birkemeyer C; Zimmermann W
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1753-64. PubMed ID: 20467738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IsPETase Is a Novel Biocatalyst for Poly(ethylene terephthalate) (PET) Hydrolysis.
    Kan Y; He L; Luo Y; Bao R
    Chembiochem; 2021 May; 22(10):1706-1716. PubMed ID: 33434375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.
    Fecker T; Galaz-Davison P; Engelberger F; Narui Y; Sotomayor M; Parra LP; Ramírez-Sarmiento CA
    Biophys J; 2018 Mar; 114(6):1302-1312. PubMed ID: 29590588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient thermophilic polyethylene terephthalate hydrolase enhanced by cross correlation-based accumulated mutagenesis strategy.
    Zheng Y; Zhang J; You S; Lin W; Su R; Qi W
    Bioresour Technol; 2024 Aug; 406():130929. PubMed ID: 38838832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.