These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25545715)

  • 41. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO
    Bian H; Nguyen NT; Yoo J; Hejazi S; Mohajernia S; Müller J; Spiecker E; Tsuchiya H; Tomanec O; Sanabria-Arenas BE; Zboril R; Li YY; Schmuki P
    ACS Appl Mater Interfaces; 2018 May; 10(21):18220-18226. PubMed ID: 29741090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and growth mechanism of thin-film TiO2 nanotube arrays on focused-ion-beam micropatterned 3D isolated regions of titanium on silicon.
    Hamedani HA; Lee SW; Al-Sammarraie A; Hesabi ZR; Bhatti A; Alamgir FM; Garmestani H; Khaleel MA
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9026-33. PubMed ID: 23957211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode.
    Quan X; Ruan X; Zhao H; Chen S; Zhao Y
    Environ Pollut; 2007 May; 147(2):409-14. PubMed ID: 16815608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology.
    Kontos AG; Kontos AI; Tsoukleris DS; Likodimos V; Kunze J; Schmuki P; Falaras P
    Nanotechnology; 2009 Jan; 20(4):045603. PubMed ID: 19417323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ti plate with TiO
    Kim DE; Pak D
    Chemosphere; 2019 Aug; 228():611-618. PubMed ID: 31059959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anodic growth of large-diameter multipodal TiO2 nanotubes.
    Mohammadpour A; Waghmare PR; Mitra SK; Shankar K
    ACS Nano; 2010 Dec; 4(12):7421-30. PubMed ID: 21126101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface properties and bioactivity of TiO
    Peng Z; Ni J
    R Soc Open Sci; 2019 Apr; 6(4):181948. PubMed ID: 31183127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of chitosan/Au-TiO
    Song Y; Li P; Li M; Li H; Li C; Sun D; Yang B
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():740-747. PubMed ID: 28629075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of titanium-based nanotube films on osteoblast behavior in vitro.
    Stan MS; Memet I; Fratila C; Krasicka-Cydzik E; Roman I; Dinischiotu A
    J Biomed Mater Res A; 2015 Jan; 103(1):48-56. PubMed ID: 24639011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis.
    Guo Z; Prezhdo OV; Hou T; Chen X; Lee ST; Li Y
    J Phys Chem Lett; 2014 May; 5(10):1642-7. PubMed ID: 26270359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Pt Deposits on TiO
    Andrzejczuk M; Roguska A; Pisarek M; Kędzierzawski P; Lewandowska M
    ACS Appl Mater Interfaces; 2019 May; 11(20):18841-18848. PubMed ID: 31013048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth orientation mechanism of TiO
    Yin B; Qian Q; Xiong Z; Jiang H; Lin Y; Feng D
    Nanotechnology; 2019 Apr; 30(15):155702. PubMed ID: 30630149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment.
    Wu H; Xu C; Xu J; Lu L; Fan Z; Chen X; Song Y; Li D
    Nanotechnology; 2013 Nov; 24(45):455401. PubMed ID: 24141177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging.
    Tanaka S; Fukushima Y; Nakamura I; Tanaki T; Jerkiewicz G
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3340-7. PubMed ID: 23488951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of hydroxide on the initial stages of anodic growth of TiO2 nanotubular arrays.
    Al-Abdullah ZT; Shin Y; Kler R; Perry CC; Zhou W; Chen Q
    Nanotechnology; 2010 Dec; 21(50):505601. PubMed ID: 21098934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications.
    Fu Y; Mo A
    Nanoscale Res Lett; 2018 Jun; 13(1):187. PubMed ID: 29956033
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures.
    Paramasivam I; Jha H; Liu N; Schmuki P
    Small; 2012 Oct; 8(20):3073-103. PubMed ID: 22961930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anodic growth and biomedical applications of TiO2 nanotubes.
    Cipriano AF; Miller C; Liu H
    J Biomed Nanotechnol; 2014 Oct; 10(10):2977-3003. PubMed ID: 25992426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical and Electrochemical Properties of Self-Organized TiO
    Fraoucene H; Sugiawati VA; Hatem D; Belkaid MS; Vacandio F; Eyraud M; Pasquinelli M; Djenizian T
    Front Chem; 2019; 7():66. PubMed ID: 30800655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.