BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25546146)

  • 1. Parallel force assay for protein-protein interactions.
    Aschenbrenner D; Pippig DA; Klamecka K; Limmer K; Leonhardt H; Gaub HE
    PLoS One; 2014; 9(12):e115049. PubMed ID: 25546146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy profile of nanobody-GFP complex under force.
    Klamecka K; Severin PM; Milles LF; Gaub HE; Leonhardt H
    Phys Biol; 2015 Sep; 12(5):056009. PubMed ID: 26356046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of camel nanobodies specific for superfolder GFP fusion proteins.
    Twair A; Al-Okla S; Zarkawi M; Abbady AQ
    Mol Biol Rep; 2014 Oct; 41(10):6887-98. PubMed ID: 25085037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme thermal stability of the antiGFP nanobody - GFP complex.
    Kakasi B; Gácsi E; Jankovics H; Vonderviszt F
    BMC Res Notes; 2023 Jun; 16(1):110. PubMed ID: 37340471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and production of nanobodies specifically against green fluorescence protein.
    Fang Z; Cao D; Qiu J
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4837-4848. PubMed ID: 32270250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and characterization of nanobodies against rhGH expressed as sfGFP fusion protein.
    Abbady AQ; Al-Shemali R; Mir Assaad J; Murad H
    Gen Comp Endocrinol; 2014 Aug; 204():33-42. PubMed ID: 24859761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Endocytic Uptake and Retrograde Transport to the Trans-Golgi Network Using Functionalized Nanobodies in Cultured Cells.
    Buser DP; Spiess M
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent protein specific Nanotraps to study protein-protein interactions and histone-tail peptide binding.
    Pichler G; Leonhardt H; Rothbauer U
    Methods Mol Biol; 2012; 911():475-83. PubMed ID: 22886270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into two distinct nanobodies recognizing the same epitope of green fluorescent protein.
    Zhong P; Wang Z; Cheng S; Zhang Y; Jiang H; Liu R; Ding Y
    Biochem Biophys Res Commun; 2021 Aug; 565():57-63. PubMed ID: 34098312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.
    Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH
    Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and targeted disruption of protein interactions in living cells.
    Herce HD; Deng W; Helma J; Leonhardt H; Cardoso MC
    Nat Commun; 2013; 4():2660. PubMed ID: 24154492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology.
    Matsuda S; Aguilar G; Vigano MA; Affolter M
    Methods Mol Biol; 2022; 2446():581-593. PubMed ID: 35157295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic studies of Syk-interacting proteins using a novel amine-specific isotope tag and GFP nanotrap.
    Galan JA; Paris LL; Zhang HJ; Adler J; Geahlen RL; Tao WA
    J Am Soc Mass Spectrom; 2011 Feb; 22(2):319-28. PubMed ID: 21472591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
    Ariotti N; Rae J; Giles N; Martel N; Sierecki E; Gambin Y; Hall TE; Parton RG
    PLoS Biol; 2018 Apr; 16(4):e2005473. PubMed ID: 29621251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide barcoding for one-pot evaluation of sequence-function relationships of nanobodies.
    Matsuzaki Y; Aoki W; Miyazaki T; Aburaya S; Ohtani Y; Kajiwara K; Koike N; Minakuchi H; Miura N; Kadonosono T; Ueda M
    Sci Rep; 2021 Nov; 11(1):21516. PubMed ID: 34728738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobody-mediated control of gene expression and epigenetic memory.
    Van MV; Fujimori T; Bintu L
    Nat Commun; 2021 Jan; 12(1):537. PubMed ID: 33483487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays.
    Früholz S; Pimpl P
    Methods Mol Biol; 2017; 1662():171-182. PubMed ID: 28861827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex.
    Kubala MH; Kovtun O; Alexandrov K; Collins BM
    Protein Sci; 2010 Dec; 19(12):2389-401. PubMed ID: 20945358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemogenetic Control of Nanobodies.
    Farrants H; Tarnawski M; Müller TG; Otsuka S; Hiblot J; Koch B; Kueblbeck M; Kräusslich HG; Ellenberg J; Johnsson K
    Nat Methods; 2020 Mar; 17(3):279-282. PubMed ID: 32066961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.