These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
668 related articles for article (PubMed ID: 25546152)
1. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication. Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152 [TBL] [Abstract][Full Text] [Related]
2. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure. Li Y; Lee Y; Port FK; Robinson BM Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489 [TBL] [Abstract][Full Text] [Related]
3. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias. Cai B; Small DS; Have TR Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062 [TBL] [Abstract][Full Text] [Related]
4. The missing cause approach to unmeasured confounding in pharmacoepidemiology. Abrahamowicz M; Bjerre LM; Beauchamp ME; LeLorier J; Burne R Stat Med; 2016 Mar; 35(7):1001-16. PubMed ID: 26932124 [TBL] [Abstract][Full Text] [Related]
5. Bias testing, bias correction, and confounder selection using an instrumental variable model. Yeob Choi B; Fine JP; Alan Brookhart M Stat Med; 2020 Dec; 39(29):4386-4404. PubMed ID: 32854161 [TBL] [Abstract][Full Text] [Related]
6. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132 [TBL] [Abstract][Full Text] [Related]
8. Assessing causal treatment effect estimation when using large observational datasets. John ER; Abrams KR; Brightling CE; Sheehan NA BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969 [TBL] [Abstract][Full Text] [Related]
9. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding. Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167 [TBL] [Abstract][Full Text] [Related]
10. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions. Kasza J; Wolfe R; Schuster T Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913 [TBL] [Abstract][Full Text] [Related]
11. Instrumental variable estimation of the causal hazard ratio. Wang L; Tchetgen Tchetgen E; Martinussen T; Vansteelandt S Biometrics; 2023 Jun; 79(2):539-550. PubMed ID: 36377509 [TBL] [Abstract][Full Text] [Related]
12. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. Hogan JW; Lancaster T Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439 [TBL] [Abstract][Full Text] [Related]
13. Instrumental variables vs. grouping approach for reducing bias due to measurement error. Batistatou E; McNamee R Int J Biostat; 2008; 4(1):Article 8. PubMed ID: 22462115 [TBL] [Abstract][Full Text] [Related]
14. A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding. McCandless LC; Gustafson P Stat Med; 2017 Aug; 36(18):2887-2901. PubMed ID: 28386994 [TBL] [Abstract][Full Text] [Related]
15. Instrumental Variable Analyses and Selection Bias. Canan C; Lesko C; Lau B Epidemiology; 2017 May; 28(3):396-398. PubMed ID: 28169934 [TBL] [Abstract][Full Text] [Related]
16. A tutorial on the use of instrumental variables in pharmacoepidemiology. Ertefaie A; Small DS; Flory JH; Hennessy S Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929 [TBL] [Abstract][Full Text] [Related]
17. Comparing the performance of two-stage residual inclusion methods when using physician's prescribing preference as an instrumental variable: unmeasured confounding and noncollapsibility. Zhang L; Lewsey J J Comp Eff Res; 2024 May; 13(5):e230085. PubMed ID: 38567965 [No Abstract] [Full Text] [Related]
18. Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies. Harbord RM; Didelez V; Palmer TM; Meng S; Sterne JA; Sheehan NA Stat Med; 2013 Mar; 32(7):1246-58. PubMed ID: 23080538 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity analysis and power for instrumental variable studies. Wang X; Jiang Y; Zhang NR; Small DS Biometrics; 2018 Dec; 74(4):1150-1160. PubMed ID: 29603714 [TBL] [Abstract][Full Text] [Related]
20. The sign of the unmeasured confounding bias under various standard populations. Chiba Y Biom J; 2009 Aug; 51(4):670-6. PubMed ID: 19650054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]