These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25546325)

  • 1. Doubling absorption in nanowire solar cells with dielectric shell optical antennas.
    Kim SK; Zhang X; Hill DJ; Song KD; Park JS; Park HG; Cahoon JF
    Nano Lett; 2015 Jan; 15(1):753-8. PubMed ID: 25546325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband quantum efficiency enhancement in high index nanowire resonators.
    Yang Y; Peng X; Hyatt S; Yu D
    Nano Lett; 2015 May; 15(5):3541-6. PubMed ID: 25919358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric core-shell optical antennas for strong solar absorption enhancement.
    Yu Y; Ferry VE; Alivisatos AP; Cao L
    Nano Lett; 2012 Jul; 12(7):3674-81. PubMed ID: 22686287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.
    Wu D; Tang X; Wang K; He Z; Li X
    Nanoscale Res Lett; 2017 Nov; 12(1):604. PubMed ID: 29177708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Photovoltaic Charge Generation of Hybrid Heterojunction Core-Shell Silicon Nanowire Arrays: An FDTD Analysis.
    Kumar V; Gupta D; Kumar R
    ACS Omega; 2018 Apr; 3(4):4123-4128. PubMed ID: 31458648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.
    Nie KY; Li J; Chen X; Xu Y; Tu X; Ren FF; Du Q; Fu L; Kang L; Tang K; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    Sci Rep; 2017 Aug; 7(1):7503. PubMed ID: 28790363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor nanowire optical antenna solar absorbers.
    Cao L; Fan P; Vasudev AP; White JS; Yu Z; Cai W; Schuller JA; Fan S; Brongersma ML
    Nano Lett; 2010 Feb; 10(2):439-45. PubMed ID: 20078065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Si/SiO
    Li X; Chen T; Zhou B; Liu G; Shi T; Wen L; Cao H; Wang Y
    Nanotechnology; 2017 May; 28(18):185402. PubMed ID: 28291014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strong antireflective solar cell prepared by tapering silicon nanowires.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Lee JH
    Opt Express; 2010 Sep; 18 Suppl 3():A286-92. PubMed ID: 21165058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design.
    Liu W; Guo X; Xing S; Yao H; Wang Y; Bai L; Wang Q; Zhang L; Wu D; Zhang Y; Wang X; Yi Y
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32887500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of highly efficient quad-crescent-shaped Si nanowires solar cell.
    El-Bashar R; Hussein M; Hegazy SF; Badr Y; Farhat O Hameed M; Obayya SSA
    Opt Express; 2021 Apr; 29(9):13641-13656. PubMed ID: 33985095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays.
    Mortazavifar SL; Salehi MR; Shahraki M; Abiri E
    Front Optoelectron; 2022 Apr; 15(1):6. PubMed ID: 36637569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical consideration of III-V nanowire/Si triple-junction solar cells.
    Wen L; Li X; Zhao Z; Bu S; Zeng X; Huang JH; Wang Y
    Nanotechnology; 2012 Dec; 23(50):505202. PubMed ID: 23182996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A waferscale Si wire solar cell using radial and bulk p-n junctions.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Hyun MS; Yang JM; Lee JH
    Nanotechnology; 2010 Nov; 21(44):445303. PubMed ID: 20935359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits.
    Zeng Y; Ye Q; Shen W
    Sci Rep; 2014 May; 4():4915. PubMed ID: 24810591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.
    Ramadurgam S; Lin TG; Yang C
    Nano Lett; 2014 Aug; 14(8):4517-22. PubMed ID: 24971707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions.
    Christesen JD; Zhang X; Pinion CW; Celano TA; Flynn CJ; Cahoon JF
    Nano Lett; 2012 Nov; 12(11):6024-9. PubMed ID: 23066872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics.
    Kempa TJ; Cahoon JF; Kim SK; Day RW; Bell DC; Park HG; Lieber CM
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1407-12. PubMed ID: 22307592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.